
- 0-Z7

A Hardware Control Class Hierarchy

T. J. Raddiffe
� Department of Physics,

Queen’s University at Kingston,
K7L 3N6, Canada

1 Introduction:

This document describes a C++ class hierarchy for doing realtime control.

The classes described herein don’t actually do any interaction with hardware,
but provide some features that any hardware control system requires. Soft-
ware objects are sometimes likened to integrated circuits, with the individual

lines of code being similar to discrete components. The Hardware class

hierarchy is more like a NIM-bin: a standardized crate that various modules

can be slotted into with ease. The individual Hardware-derived cla5ses are

like NIM modules that can be slotted into the standard structure.

An overview of the design is given in Section 2, which includes an example
of a main loop to implement the classes. How to write a new Hardware-
derived class is shown in Section 3, including a discussion of multiple inheri-

tance. Other functionality of the Hardware classes is discussed in Section 4:;
many of these helper functions are very useful when writing Hardware-

derived classes, and so this section is recommended reading.
Note on capitalization etc.: there is a widespread practice in object-

oriented programming circles for the first letter of class names to be upper

case, and the first letter of object names to be lower case. This is a practice
that is slowly being built into the existing Hardware-derived code, and I
heartily encourage everyone to follow it. It may be mindless conformance to

arbitrary, socially defined conventions, but then again, so is speaking English.
In this document, class names will be mostly bold face and function names

will be mostly italic. Code examples and variable names will be typewriter.

Note on standards: C++ is not very standardized Just yet, and all of
’

this code was meant to run on IBM PC compatibles when compiled with the

Borland C++ compiler. Parts of it have also been complied with the GNU
g^-4- compiler version 2.6.8 under LINUX, and I found that a few minor

changes liad to be made to do this. When I refer to "ordinary C++" I mean
whatever the people at Borland tliink of as ordinary. If you try to port this

code to another platform or even another compiler on the same platform,
you may find a number of errors due to small differences in standards.

2 Functionality:

The functionality these classes support is:

� polling of all derived classes

� command distribution to the right object

� basic command parsing.

These functions are supported by a hierarchy of three classes:

� Hardware class to provide a common interface for polling and com-

mands, and to provide automated name handling

� Command class to provide simple parsing, to the extent of calling
member functions based on command string input

� Controller class to allow different derived classes to have different

Command lists but still be handled "via the common Hardware in-

terface.

The idea is to allow the user to send a command to any Hardware-

derived object via a single call to the static member function Hardware::-

doCommand(), and to poll all Hardware-derived objects with a single call

to the static member function Hardware::doPoll(). For example, a simple

main loop is shown in Table 1.

With the main loop shown in Table 1 every object that is a Hardware-

derived class has a chance to claim the command in inString as its own. The

syntax for all Hardware commands is:

objectName commandName argi arg2 arg3 ...

when Hardware::doCommand(inString) is called all the Hardware-derived

objects are looped over and their names are compared to the first token in

inString. If none match then an error message is returned (error messages

are discussed in detail below in Section 5). If an object is found that matches

/* Hardware class initialization stuff... */

Motor ml^’motorl’’); // some Hardware-derived classes

Motor m2^ fmotor2J’);

Penguin pl(f^Pingu’’);

char inString[512]; // input string from keyboard

do

{
if (getStringFromKeyboard(inString)) // TRUE if input is ready

{
Hardware::doCommand(inString); // parse inString and run command

}

Hardware::doPoll(); // poll all Hardware objects

} while (0 == 0);

Table 1: Simple main loop to implement Hardware functionality

the object named by inStnng then the rest of inStnng is passed to it via

the command() member function of tlie Controller class. Controller is

a template class that is derived from Hardware. There is a different in-

stance of the Controller template for each Hardware-derived class, and

each Controller instance maintains a table of Command class objects ap-

propriate to that class. When inString is passed to commandf) this table is

searched for the appropriate command name. If it is found, then the asso-

ciated member function is run. An error string is returned if the command

name is not found. Beyond this point the member function has to provide
its own parsing, which is a sensible division of labour as only it can know

what it wants to do with the rest of the command arguments.
At the moment there are also some helper messages that are displayed

when error conditions occur. If a command string contains an object that

can’t be found a list of known objects is given. If a command can’t be

found a list of known commands is given. NOTE that name matching is

case-insensitive.
This scheme allows each object to do its own parsing, rather than having

a separate parser that deals with commands for all objects. The advantage
of the former method is that every object supplies its own functionality,

and the loftier bits of the hierarchy (i.e. the Hardware, Controller and

Command classes) can be utterly ignorant of the nature of derived classes

and their member functions. To pull this off it is necessary that each derived

CLASS have its own table of Command-derived objects. The natural way

to do this in C++ is to derive Hardware classes from a base class that has

a static array of Command objects. The difficulty with this approach is

that inheritance from a non-template class would result in members of ALL

derived classes sharing the same static array of Commands, which is clearly

not appropriate. The solution is to insert a template base class between

the Hardware class and its derived classes. All Hardware-derived objects

inherit Hardware solely through an instance of this template base class,

which is called Controller.
The Controller template class takes two formal parameters: one is a

class type specifier, and the other is an integer expression that gives the

number of commands (i.e. the size of the Command array) for that in-

stance. The class type specifier is a dummy that is used only to ensure

that each instance is unique: it is not actually needed by any of the Con-

troller member functions. Each Hardware-derived class inherits a static

array of Command class objects via the Controller template class, and

because each instance of a template class contains unique static data, each

Hardware-derived class has its own set of Command objects. These ob-

Jects must be initialized by t.lie subclass code in a manner described below.

The Controller template class contains a function that overloads the

pure virtual function command(j in the Hardware class. The purpose of

this function is to search the command array for a Command-derived ob-

ject that has a name that matches the command name passed in via the

Hardware::doCommand() input string. If such a Command-derived object
is found, its member function subCommand() is run, with the this pointer

and the command argument string parsed from Hardware: :doCommand()
passed as arguments.

The subCommand() member function of Command is generally a one-

liner that just uses the this pointer argument to call a member function of

the class that contains the Command-derived class. This member function

generally takes the argument string directly as an argument, and does its

own conversions for numerical data contained in the string.

3 Creating a New Hardware-derived Class

If you’re read the previous section carefully, you are probably pretty confused

by this point. Fortunately, one of the great things about object-oriented
programming is that you don’t have to understand the details of the base

classes to use them, any more than you have to understand thermodynamics
to use a car or principles of just government to be Prime Minister.

From a programmer’s point .of view, use of the Hardware hierarchy

follows a very simple algorithm. First create a header file for the new class

with a declaration of the form shown in Table 2.

The derived class inherits all of its Hardware functionality via an in-

stance of the Controller class. The Controller template takes two pa-

rameters (the things in 0 after the word "Controller" at the top of the

declaration.) The first of these is the type of the derived class (in this case

Derived)and the second is the number of commands the class takes. The

command number is used internally by the base classes to search the derived

class’s command array for the name of a command.
By convention, the derived class has three sections to its declaration. The

first section is a private part that contains an the ordinary internal data that

describes class objects. The second section is a public part that contains

the ordinary member function prototypes, as well as the prototype for the

poll() member function that will be overloaded and a constructor that takes

a character string containing the object name as an argument. The third

section is a private part that contains the declarations for the ComiTiand-

derived classes that bind a command name to an ordinary member function.

ttdefine DERIVED_COMMAND_NUMBER 3 // number of Commands in list

class Derived: public Controller<Denved, DERIVED_COMMAND_NUMBER>

(
private:

int i; // ordinary internal class data

public: // public class member functions

Derived(char* objectName); // constructor (this is REQUIRED)

void poll(void); // overloaded polling function

char* getl(void); // ordinary public class member functions

void setl(int);
void die(void);

private: // Command-derived private members

class Getl: public Command // get internal value

{public:
GetKvoid^CommandC’getP ’){;}// pass name to Command

char* subcommand(Hardware *hw, char* inString)
{return ((Derived*) hw)->getl();} // call member function

};

class Sell: public Command // set internal value

{public:
Setl(void) : Command("setI’ *){;} // pass name to Command

char* subcommand(Hardware *hw, char* inString) // call function

{((Derived*) hw)->setI(atoi(inString)); return /’HW.ERR.OK’1}

};

class Die: public Command // kill off process

{public:
Die(void) ^ommandC ’die’ *){;} // pass name Command

char* subcommand(Hardware *hw, char* inString) // call function

{((Derived*) hw)->die(); return (’HW_ERR_OK1);}

};
}; // end of Hardware-derived class declaration

Table 2; Header file for Hardware-derived class
6

Not much needs to be said about the two initial sections, as they arc noth-

ing more than ordinary C++. The third section contains a list of class
declarations for Command-derived classes. These declarations have two

important parts: the constructor and the subCommand() member function.
The sole purpose of the constructor is to pass the NAME of the command
to the Command base class. When this name appears in a string passed
to the command parser for the derived class, the subCommandf) function
will be run. The subCommand() function takes a pointer to a Hardware

object and a character string as arguments- Passing the first argument as a

pointer to Hardware avoids problems with C++ type checking. Inside the
function this pointer is then cast to the derived type, and one of the derived

type’s member functions is run. For member functions that,do not return a

value, the string (^HW.ERR.OK’ ; is returned to indicate that the command
was run.

The basic code file for a Hardware-derived class is equally simple, as

shown in Table 3. The derived class code consists of four sections:

� initialization of static data in Controller

� naming constructor that handles commandArray element initialization

� poll() member function that handles hardware access

� ordinary member functions that give access to internal data

Each of these sections warrants a few comments. Static data of a C++
class must be initialized. The following explanation has been lifted verbatim

from the G++ info pages:

Declare *and* Define Static Members

When a class has static data members, it is not enough to

declare the static member; you must also *define* it.

For example:

class Foo
{

void method.0 ;
static int bar;

tinclude ’’derived.h’’ // Derived class declaration

Itinclude <stdlib-h> // atoiO prototype

Itinclude <dos.h> // inportO prototype

/� initialize static data in Controller class: �/

int Controller<Derived,DERIVED_COMMABD_BUMBEil>: :objectffuraber = 0;

Command* Controller<Derived, DERIVED_COMHABD_EUMBER> : : commandArrayCDERIVED.COMMABD^BUMBER]

/� Baming constructor passes object name to base classes */

Derived::DerivedCchar* objectBaroe):
Controller<Derived,DERIVED_COnMABD_BUMBER>(’ ’Derived" .objectBarae)

<
i = 10; // initialize ordinary data

if (objectBumber == I) // first object of this type

{
int index = 0; // cominandArray index

coramandArray[index++3 = nen Getl;

commandArray[index+*] = neo Setl;

commandArray[index++] = neo Die;

if (index �= DERIVED.COMMABD.BUMBER)

<
fprintfCstderr,*’Bad command number in Derived con3tructor\n’’);

exit(-l);

}

for(index = 0; index < DERIVED_COHMABD_BUHBER; index++)

{
if (’coanandArrayCindex])
{
fprintf(stdarr,"Allocation failure in Derived constructor^");

exit(-l);
}

}
}

/� The polling function does the actual hardware access */

void poll(void)
{

i = inport(0x300); // 0x300 is a typical board base address

}

/- The following are just the ordinary member functions of the class. �/

char» getKvoid) (static stringCiS] ; sprintf(string,"7.d" ,i); return string;}

void setKchar* string) <i = atoi(string);}

void die(void) (fprintf(stderr,*’Shutting doBn\n’’); exit(-l);}

Table 3: Code for a simple Hardware-derived class

};

This declaration only establishes that the class ’Foo’ has

an {int) named Toolbar’, and a member function named

’Foo: ^ethod^ . But you still need to define *both*

’method^ and ’bar’ elsewhere. According to the draft ANSI

standard, you must supply an initializer in one (and

only one) source file, such as:

int Foo::bar = 0;

So the first two code lines in any Hardware-derived source file should

contain the definitions of the static members of the corresponding Con-
troller instance, as shown.

The naming constructor is is used to pass the name of the object being
created up the hierarchy to the base classes. This is necessary so the name
of this object will be known when Hardware: :doCommand() tries to parse

input strings and send commands to the appropriate object. This parsing
is done by simply matching the first token in the string with the name of
the object. The constructor also has the task of initializing the elements
of conunandArray for the class the first time it is called. objectNumber is

a static member of the Controller class that counts how many objects of
that type have been created. The base class constructors are called prior
to the derived class constructor, so objectNumber, which is initialized to

zero, will have a value of one when the derived class constructor gets to it.

The constructor then assigns each element of commandArray to a different

Command-derived member function of the derived class. commandArray
is a static member of Controller, and once Hardware::doCommand() finds

the right, object for a command it passes the rest of the command string
(stripped of the objects name) to the command() function of that object-
The command() function loops over all of the commands in commandArray
and calls the function whose name matches the first token in the string. The

matching is case-insensitive.
One of the uglier aspects of this implementation is that the deallocation

of the conunandArray elements is handled by the Controller destructor,
even though they are allocated at a lower level. I haven’t thought of a nice

way of allocating them higher up, and so long as care is taken to do the

allocation properly and to CAREFULLY CHECK FOR ERRORS after allocation

is nominally complete this should not be a problem.
The sole purpose of the poll() member function is to access hardware and

update any variables tlial need to reflect the current slate of tlie hardware-
Note that poli() does not take any arguments or return any values. All iL

does is deal with hardware and handle any other updating of tlie internal

state of the class.
The ordinary member functions are the complement of poll(). They

should not access hardware at all, but only return values that have been

grabbed from hardware by poll(). This ensures that if another object uses

an ordinary member function to access the state of an object that tlie same

values will be returned on sequential calls that are not interrupted by an-

other cycle through the polling loop. If another object requires continually
updated values it must call poll() for the object it is interrogating by hand.

A note on inheritance: the Hardware hierarchy has not been designed
to support multiple inheritance of Hardware-derived classes. If you need

to create Hardware-derived classes that contain other Hardware-derived

classes this must be done by inclusion, not inheritance.

You now know pretty much everything you need to create your own

Hardware-derived class. The examples above contain all of the required
functionality, and simply copying them out and compiling them should pro-

duce a working (although not very interesting) class.

4 Other Hardware Class Functionality

This section describes various other member functions of the Hardware
class. A complete list of the Hardware class member functions is given at

the end of the section.
Any Hardware-derived object has a state described by the private flags

conunandable and pollable. There are a few cases, particularly for debug-
ging purposes, when you may want to turn off polling for an object. The

polling state is changed by the poll0n() and poll0ff() member functions.

Likewise, it is very often the case that when an object is part of a higher-
level object you may want to prevent it from accepting commands while the

higher-level object is doing something. For instance, it would be very bad to

reset a counter while it is being used by a higher-level object to determine

the position of something that is being moved by a motor: the motor-control

algorithm of the higher-level object would have a hard time coping with this.

So the command-acceptance state can be changed by using the comman-

d0n() and command0ff() Hardware member functions. All objects are

default commandable and pollable.
For example, suppose you have a Valve class that includes a Motor and

an PositionEncoder object. The member function shut.Valve() might look

10

like:

void Valve::shutValve(void)
{

valveMotor->stop(); // stops any motion currently happening

valveMotor->commandOfi(); // makes sub-objects un-commandable

valveEncoder->commandOff();

moveValue(-amountOpen); // closes valve by the amount it is open
}

The example assumes that amountOpen is a private member of the Valve
class that tracks the amount the valve is open. Note that the poll() function,
which will be responsible for stopping the motor when the valve is shut, must
contain the lines:

void Valve::poll(void)
{

if (amountOpen == desiredOpening) // valve has reached desired position

< ...
valveMotor->st6p(); // stop motor

valveMotor->commandOnO; // make sub-objects commandable again
valveEncoder->cominandOn() ;

}

The Hardware class also provides the functions getClassName() and

getObjectName() to find the class and object name of any Hardware object.
Polling of a single object by name is provided by the static member function

void doPoll(ch.art objectName) this is mostly useful for debugging.
A complete list of Hardware class functionality is as follows:.

static void doCommand(char* commandString) match an object name
to the first token in commandString and pass the rest of the string to

that object^ static command() function for further processing-

11

static void cioPoll(void) call the poll() functions of all known Hardware-

derived objects. The functions are called in the same order tlic objects
were created.

static void doPolI(char* objectName) poll a single object by name

poll0n()/poll0ff() change pollable state of an object

comrnand0n()/cornmand0ff() change commandable state of an object

char* getClassName() return name of object’s class as set by constructor

char* getObjectName() return name of object

5 Error Messages

The doCommand() function returns three standard strings:

� HW_ERR_NO_OBJECT could not find an object to match the first token

in the command string

� HW_ERR_NO_COMMAND could not find a command to match the first token

in the command string after the object name

� HW_ERR_OK so far as the Hardware class can tell the command ran

�ok
’

’

Individual Hardware-derived class member functions may return their

own strings in place of these messages.

12

Hardware Controller Class Hierarchy

class: Hardware

Commands: doCommand

: ooPoll

: getClassName

: getObjectName

Base Class;

Template Base Class:

Real Class:

Derivative Dependency:
Declarative Dependency:

class: Axis

Commands: poll

:up

: down

; etc....

Contains: Up:Command

: DowniCominand

: etc....;Command

class: Other Hardware class: Other Hardware

