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Abstract

This paper introduces a new type of vertex fitter for SNO. It is a development and
extension of the Elastic Arms algorithm of Ohlsson, Peterson, and Yuille {Ohlsson 92,
Ohlsson 93] and can be regarded as a fancy time fitter that uses a simulated annealing
technique in the minimisation and has a very appealing method for eliminating noise and
reflection hits as the fit proceeds. It is shown that the elastic fitter outperforms both the
time and quad fitters but the improved quality of fit is at the expense of a more complicated
algorithm with a number of free parameters which need to be set. It may well prove to be
the case that the Elastic Fitter does not significantly improve upon existing methods, but
the techniques used by the fitter are certainly of great interest and warrant further study.

1 Introduction

The motivation for investigating a new kind of vertex fitting has not been so much to improve
the quality of a fiducial volume cut or eliminate PMT f+ events, but rather to produce the
best possible fit position and time that can then be used as an origin for extracting hit pattern
parameters for event classification. A small change in fit position can produce fairly significant
changes in the parameters that are fed into a neural network (see [Brice 95] for a description
of the use of a neural network in SNO). In fulfilling this assigned role the Elastic Fitter has
proven pretty successful. Its performance and ease of use when applied to the more standard
fitter tasks may not show such success but are worth looking at.

2 The Algorithm

The Elastic Fitter algorithm is a development of the Elastic Arms algorithm of Ohlsson,
Peterson, and Yuille [Ohlsson 92, Ohlsson 93] and these references should be consulted for
"a full introduction to the technique. The Elastic Arms algorithm was designed to fit TPC
data to straight or helical tracks. It has been changed here to perform a combined position
and direction fit with the respective minimisations being largely decoupled. The next section
will describe the algorithm in general terms with the following two sections dealing with its
application to a position and to a direction fit respectively.



2.1 A General Description

Given aset of hits (TPC, PMT, etc.) labelled by 7 and forming an event, the task is to fit them
to some track/vertex defined by a set of parameters 7. To do this one first constructs the
square of the minimum distance from each hit to the track/vertex. This minimum distance is
assumed to be Gaussian distributed about zero and its square is denoted by M;. The desired
fit could then most simply be carried out by minimising
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with respect to the parameters 7y, where o; is a measure of the Gaussian error on each hit.
Such minimisations are plagued by problems with local minima and, more seriously, by the
effects of noise and ’bad’ hits. But suppose, through divine insight, it were possible to identify

these bad hits. One could then define a weight S; for each hit where

1 for a true hit
0 for a bad hit
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and then minimise the quantity

E'=% SiM; (2)

where the summation still extends over all the hits in an event and the o; are all assumed to
be the same.

In the absence of divine insight, suppose some method can be constructed to enable the
algorithm to decide for itself which hits are good and which are bad and set S; accordingly. In
this case the function of Equation 2 is the wrong function to minimise, as its global minimum
can most easily be achieved by saying that EVERY hit is bad and setting S; = 0 for then
all. What is needed is a penalty term in the function which ensures that there is some cost
to assigning a bad hit. Calling this cost A the correct minimisation function is

E:Z[Siﬂ/[;+(1—5,~)z\] | (3)

The optimal fit parameters 7 for a given event are those which minimise E and the simplest
way to do that is iteratively using gradient descent. Starting with some initial values of 7%
the fit parameters are successively altered by A7y given by
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where 77 is an update parameter controlling the speed of descent.

It is now necessary to construct a method by which the algorithm can set the weights S;
for itself. The first step is to notice the close analogy between the minimisation function of
Equation 3 and the total energy of a system consisting of N particles each of which has two
energy states available to it (a physical picture would be that of a lattice of spin 3 particles).
In this case S; = 1 would indicate the occupation by the ith particle of the level with enegy
M; and S; = 0 the occupation of the level with energy A. The A level has fixed energy, but
the M; level has an energy that depends upon the occupations and energies of all the other
particles and is also different for each particle. Pushing the analogy further one can consider
the system of particles existing in an environment of finite temperature. To calculate various
properties of the system of particles it is usually only necessary to consider the average energy
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Figure 1: The weighting factor V; as a function of the squared distance measure M; for various
values of the temperature parameter g3

level occupation < S; > at a particular temperature and this is done by using the Boltzmann

distribution. With g = %, one can therefore define
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One can now take the results of pushing the energy level analogy back into the the fitting
algorithm and instead of using S; in the gradient descent use < S; >7. So that

oM;
Am = —77; Vim (6)
" where
Vi = [14 e PO-MI}-1 (7)

This weighting factor V; can be derived in many ways (the working above is but one
of them) and is the key to the algorithm. It is shown in Figure 1 as a function of M; for
various values of the temperature parameter 3. Values of M; less than A receive a weight
close to 1, whereas values above A are effectively discounted from the fit with a weight close
to 0. It can be seen that A is behaving as a threshold, with hits whose M; is greater than
this threshold being discounted as bad hits. Notice also that the sharpness of the threshold
increases as the temperature T is lowered (i.e. as § is raised). This suggests an amendment
to the minimisation strategy. At the start of the gradient descent iteration the initial values
of the fit parameters 7 may not be very accurate and so a slow threshold between good
and bad hits (i.e. a high temperture Tipjijal) is necessary so that true hits are not completely
rejected merely because of this inaccuracy. As iteration proceeds and the fit improves then



this elasticityin the threshold (the property which gives the fitter its name) should be reduced
(i.e. T should be lowered) so that hits are neglected whose M; we can now be confident are
bad. This lowering of temperature as the fit proceeds should not continue to 7' = 0 but stop
at some final temperature Tgna that reflects our uncertainty in the value of A that should
be used. This proceedure is an example of simulated annealing (the name comes from the
analogy with the slow cooling of a metal to give it greater strength). It is becoming a widely
used method principally because it greatly increases the chance of finding the global rather
than a local minimum of a function.

There is one further detail needed to complete the algorithm. Close to a minimum the
minimisation function E has an approximately parabolic shape, In order to avoid oscillation
from one side of the minimum to the other, as the iteration nears its end, it is necessary to
progressively lower the step length parameter 7. This should only start once Tg,a has been
reached and will enable faster convergence.

2.2 The Position Fit

To apply the Elastic algorithm to a specific situation one need only specify the squared distance
measure M; and the fit parameters to be obtained. For the position fit MP°® is simply the
squared residual for each hit, where a constant éP°° is subtracted from the residual to try to

"ensure that the residuals for the true vertex are distributed about zero.

MP® = [|r; - ra| — v(t: — tae) — 6°°° ) (8)

where r;,t; are the PMT position and time, rg,,f5 are the fit position and time (the fit
parameters one wishes to obtain), and v is the speed of light in H,O.
As an aside the x? that the time fitter minimises is simply

1
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where ¢ is v times the timing jitter of the PMTs.
Plugging the definition of MP°® into equation 6 the position fit proceeds by first picking
some initial values for rg,tg¢ and then updating them with each iteration according to
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with VP defined as before to be

)

VPos — [ 1 + =P (AP —MP?) ] .

Iteration proceeds with TP (i.e. 1/8P°%) decreasing from Thgy., to TE >~ and then with
1P being lowered.
2.3 The Direction Fit

To define M;ﬁr for the direction fit one starts by specifying R(6g:, ¢s¢) as the matrix that
rotates a coordinate system so that its polar axis is along the Cerenkov cone axis (which is
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Figure 2: The transformed space where the PMT hit is at g{-,' the diagonal line is the Cerenkov
cone, d; is the nearest distance from the PMT hit to the cone, and ¢; is the smallest angle
between the Cerenkov cone and the PMT hit.

given by fg; and ¢g, in detector coordinates). One can then define a transformed PMT hit
position r’ '

ri = R(0g¢, dae) (£ — rac) (10)

In this transformed coordinate system the fit position is at the coordinate origin and the
Cerenkov cone axis lies along the polar axis. This is shown in Figure 2 which also indicates
the minimum PMT-cone distance d;. Some simple geometry leads to

d; = cos Oc+/(z? + y!?) — sin 6.2} (11)
This means the sin of the angle ¢; between the Cerenkov cone and the PMT hit is

sin di  cosbc/(z? +y??) — sin 0.2
T VP )

(12)

Also show in Flgure 2 is the distance a; along the cone of the cone point nearest to the PMT
hit position. It is given by

a; = sin O./(z + y/?) + cos 8.2} . (13)

PMT hits which have a negative alpha, i.e. hits which are behind the cone should be left
out of the fit as they can badly skew the result. One can now define the mlmmum squared
distance Mdlr as sin? ¢; i.e.

[cos(:‘c\/(z'2 +y2) — sin 6.2 )°
[P T y2 + 77 a>0
% (14)
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Figure 3: The distribution of the residual |r; — rg| — v(¢: — tg) for the true vertices of 100
charged current events isotropic in the D,O.

With M2"* defined one can once again plug it into Equation 6 and produce the iterative
update rules for the fit parameters g and ¢ge. With a; < 0 then Afg = Agge = 0, and with
a; > 0 the updates are

!
_ T z;cos b
2d; r;—-r5 OR ! cos 6,
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where RT is the transpose of R(fg, nc)-

One deviation from the general algorithm occurs in the equations above. The position
weighting factor V" has been included in addition to the direction weighting factor V4.
This makes sense as hits which the position fit declares to be bad should also be excluded
from the direction fit. The direction fit has not been allowed to impact the posmon fit in the
same way because it is significantly less precise.

3 Setting the Free Parameters

The largest single disadvantage of the Elastic fitter is the number of free parameters control-
ling the algorithm which need to be externally set. Some have a strict dependence on the
physics and properties of the detector, others reflect the average properties of the minimi-
sation function. These parameters are listed below with indications of how they should be
set.
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This is the initial temperature of the simulated annealing. There are no strict guidelines
to determine how it should be set, but a value of 10-50 times the final temperature T
is a good bet.

The final temperature of the simulated annealing can be set with reference to Equation

5. The exponential in VP is effectively a Gaussian in £/MF and so /TEey should

‘be the width of this Gauss1an Figure 3 shows the distribution of the residual (i.e.-

+,/MP) for the true vertex position of 100 electrons with a charged current energy
spectrum. The width indicated is 36.3cm (which is Just v times the timing jitter of the
PMTs), meaning that They should be set to ~1300cm?.

This is the rate at which the temperature TP° decreases. From one iteration to the
next the annealing temperature decreases by a factor of k7. Once again there are no
strict guidelines, but a value of 0.985 works well.

Events with squared residuals (i.e. MP) greater than AP should be considered bad
hits. From Figure 3 it can bee seen that a good value for this re51dual is 200cm, meaning
that AP should be set at 40000cm?.

As stated before the algorithm works best if the distance measure being minimised is
Gaussian distributed about zero. As can be seen in Figure 3 the residual for a true vertex
is nicely Gaussian distributed but has an offset of -12.8cm. This offset is a manifestation
of the ever present fitter pull and to try to counter it 6°°% should be set to -12.8cm.

The size of the iteration step length parameter nP° is dependent upon the shape of the
minimisation function. Experimentation shows that a value of 0.0l works well.

This is the rate at which the step length 7P° decreases once Thoy has been reached.
From one iteration to the next the 7P° decreases by a factor of xF°%. A value of 0.985
is suitable.

One has to provide the algorithm with starting values of the fit variables. These should
be produced by another fitter. With the Elastic fitter being simply a fancy Time fitter,
using an initial Time fitted vertex is unsuitable as a bad hit which pulls a Time vertex
is also likely to pull an Elastic vertex if it is allowed to initially dominate. A Quad fitted
vertex is suitable, however.

The iteration should be stopped once the minimisation function F differs fractionally
by less than ftol from one iteration to the next. A suiable value for ftol?°s is 0.000001.

Direction Fit

ler

initial °

dir ._
Tﬁnal

dir
KT

- As with the position fit a value of 10-50 times the final temperature Tt is a good bet.

Figure 4 shows the distribution of sin ¢; (i.e. Z+/MJ¥) for the true vertex direction
of 100 electrons with a charged current energy spectrum. The width indicated is 0.26,
meaning that TS| should be set to 0.07.

fina

- For the direction temperature decrease rate there are, again, no strict guidelines, but a

value of 0.985 works well.
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Figure 4: The distribution of SIN of the smallest angle between the PMT hit position and
the Cerenkov cone for the true vertices of 100 charged current events isotropic in the D,O.
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Events with sin® ¢; (i.e. M) greater than A9 should be considered bad hits. From

Figure 4 it can bee seen that a good value for the sin ¢; cutoff is 0.4, meaning that A4
should be set at 0.16.

Experimentation shows that a value of 0.1 works well.

From one iteration to the next the i decreases by a factor of nf,i’. A value of 0.985 is

again suitable.

Multiple scattering ensures that the direction fit is unavoidably less accurate than the

position fit. The accuracy of the initial values of 8g¢, and ¢g; is therefore less important
than that of their position fit counterparts. A simple mean of the hit directions from
some fitted vertex is sufficient.

This can be set to be the same as ftolP°, i.e. to 0.000001.
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Figure 5: The distance (in cm) between the fitted and true vertices for 1500 5MeV electron
events isotropic in the D20 and using the Quad Fitter, the Time Fitter with an initial Quad
vertex, and the Elastic Fitter with the same initial Quad vertex. A cut is made at 100cm

4 Results

All results presented in this paper are generated using SNOMAN version 2.08. Shown in
Figures 5 and 6 are the results of fitting 1500 5MeV electron events isotropically distributed
in the D20 (the number of events which fail to fit is negligible). The histograms show the
distance from true to fitted vertex for the Quad Fitter, the Time Fitter with an initial Quad
vertex, and the Elastic Fitter with the same initial Quad vertex. Figure 5 has a cut at 100cm
and Figure 6 a cut at 300cm.

When comparing fitters via these distance error histograms two criteria are relevant:-

1) The extent of the tail out to large distances
2) The proximity of the main peak to zero.

A long tail is a result of bad hits being incorporated in a fit and skewing the result whereas the
location and sharpness of the main peak depends loosely upon how much of the available hit

9
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Figure 6: The distance (in cm) between the fitted and true vertices.for 1500 5MeV electron
events isotropic in the D20 and using the Quad Fitter, the Time Fitter with an initial Quad
vertex, and the Elastic Fitter with the same initial Quad vertex. A cut is made at 300cm

information is used by the fitter (here there is a vague analogy with a /N statistical error).

Typically the Quad Fitter [Frati 94b, Frati 94a] performs well when the first criterion is
considered, with all of the 1500 fits getting within 300cm of the true vertex. This is because
bad hits tend to either give complex solutions to the time quadratic or produce quad points
far from the main cluster, giving the algorithm an inbuilt method for reducing the effect of
bad hits. Its main peak, however, is comparatively spread out, with 7.3% of the fits failing
to get within 100cm of the true vertex. The same technique which damps out bad hits also
ensures that less of the good hit information is used and so the fitter does not to perform so
well under the second criterion.

The Time Fitter, even when given a Quad fitted initial vertex, has a very long tail, with
4.7% of the fits further than 300cm from the true vertex. Its technique of fitting, removing hits
with a bad x?, refitting etc. is not satisfactory either aesthetically or practically. However,
when the fit is good the Time Fitter makes better use of the available statistics (i.e. it uses
more of the hits) giving it a sharper peak closer to zero than the Quad Fitter.

10
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Figure 7: The angle (in radians) between the true and fitted direction for the Time Fitter
and the Elastic Fitter.

The Elastic Fitter performs well under both criteria. With its V; weighting it has good
noise rejection and a minimal tail, and with the similarity of the algorithm to a x? fit it has
the Time Fitter’s sharp peak close to zero.

Figure 7 compares the direction fit results for the Time Fitter (a simple vector sum of the
PMT hit directions) and the Elastic Fitter. Here the improvement is quite dramatic, but this
should be no surprise given the feeble competition” provided by the Time Fitter’s direction
fitting algorithm. -

Whilst the improvement in performance of the Elastic Fitter over both the Quad and
Time Fitters is clear it must be admitted that it is far from dramatic. It will probably be
concluded that the complexity of the algorithm is not outweighed by quality of the fit. Such
judgements should, however, be postponed until tests have been made on a PMT S data set.
Such a data set requires considerable CPU time to get enough events over 30 hits, but will
be obtained from SNOMAN runs on the HP processor farm at the Rutherford-Appleton Lab.
The improved fit quality that the Elastic algorithm provides is still useful for the extraction

11



Fitter | CPU time (in units of % of fits % of fits
Method the Time time ) outside 100cm | outside 300cm

Quad 122 ‘ 7.3% 0.0%
Time 1 8.1% 4.7%
Elastic 4 2.8% 0.0%

Table 1: Timing and fit quality results of the three fitters

of event information for a neural network analysis, and the techniques used by the ﬁtter may
provide inspiration for further work.

Shown in Table 1 are the results of timing studies on the three fitters under consideration.
It can be seen that the Elastic Fitter has a speed comparable to that of the Time Fitter and
considerably faster than that of the Quad Fitter. However, as long as the Elastic algorithm
needs an initial Quad fit the speed difference between the two is irrelevant. It is clear that for
the Elastic Fitter to be viable an alternative initial fit needs to be found. Care must be taken
when making these time comparisons, however, as they are specific to 5MeV electron events.
The Time and Elastic fitter CPU times are independant or, at worst, linearly dependent on
the number of hits, but the size of the Quad cloud and hence the Quad CPU time depends on
the ~ 4" power of NHITS. Therefore, for event data sets where the mean NHITS is greater
than 50 the disparity between the Quad CPU time and the others will be much greater.

5 Comments and Further Developments

It is well known that late hits within the Cerenkov cone tend to push the fit position back
along the track direction and such hits outside the cone pull it along the track direction. With
more phase space outside the Cerenkov cone then the usual effect of such fitter pull is to drag
the fit position along the direction of the electron. It can also be shown [Klein 94] that a
vertex determination made by fitting the hits to a Cerenkov cone tends to push the vertex
position back along the electron’s direction i.e. in the opposite direction to the pull due to hit
times. The original thinking behind the Elastic Fitter was to try to use these two opposing
pulls to cancel each other by carrying out the position fit with the distance measure Mf°*

Mtot; MPOS + Mdlr (16)

where v would be a parameter determining the relative weighting that should be applied
to the position and direction components of Mt and MFP°® and Mfﬁ' would have their
previous definitions. By carefully chosing the value of v it was hoped that the two opposing
pulls would tend to cancel each other. Unfortunately, and perhaps not surprisingly, this
proved not to work. The reason being that compared to the sharp precision of a vertex
~determination produced using MP°°, a vertex fit using MF" is a very blunt instrument and
setting v large enough to effect a partial cancellation of the pulls meant that the accuracy of
the position fit was severely compromised. Although this implementation of pull cancellation
proved ineffective the basic idea may warrant further study.

In its original incarnation as the Elastic Arms algorithm [Ohlsson 92, Ohlsson 93] the
fitter was constructed to similtaneouly fit multiple tracks in a TPC event. Although modified
in this paper, the Elastic Fitter maintains the capability to be simply extended to fit multiple
vertices and directions. For the details of how this can be done reference should be made to
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the two papers cited above. Such an extension may possibly prove useful when fitting neutral
current events or even (v events.

6 Conclusion

As has already been stated, the quality of fit produced by the Elastic Fitter may not be enough
of an improvement to outweigh the compexity of using the algorithm, but it is certainly true
that the technique of simulated annealing, the method used to eliminate bad hits, and the
possibility of extending the algorithm to handle multiple vertices demand further attention.
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