An Overview of the Feedforward Neural Network Technique
and its Application to SNO Event Classification
SNO-STR-95-037

S.J. Brice, Oxford University
15 June 1995

Abstract

This paper presents a general description of pattern classification using a feedforward
neural network with particular reference to the use of such a technique for SNO event
classification. The separate tasks of event by event and statistical hit pattern recognition
are described. '

1 Introduction

In the last five years neural network techniques have begun to be applied to high energy
physics problems [Den92] [Pet92] and particularly to those involving pattern recognition
[BT92] [DC92]. In the context of SNO such techniques are crying out to be used for event
classification via hit pattern recognition. This paper presents an introduction to just one
neural net paradigm; the feedforward network, which is by far the most popular method and
is ideally suited to the questions SNO needs answered. Two kinds of pattern recognition are
relevant to the experiment. Event by event classification is needed to identify the nature of
individual hit patterns and is useful when analysing supernova events. For dealing with the
solar neutrino flux then statistical classification is more relevant and involves taking a sample
of hit patterns and finding the fraction that belongs to each event class. The structure of this
paper separates into two parts. First the feedforward neural net is described via its applica-
tion to the event by event problem and then these ideas are modified to handle the statistical
classification task.

2 Event by Event Hit Pattern Recognition
2.1 The Task

Given a single PMT hit pattern the task of event classification breaks into two parts:

1. Extract a number of parameters from the hit pattern. These parameters should describe
the pattern and capitalise on the intrinsic differences between patterns from the various
event classes.

2. Break up the parameter space into fixed regions with each region being assigned to an
event class. The parameter values extracted from a hit pattern then specify a point in
parameter space and the region within which this point falls then gives the event class.

0.5
Xa
0.4
0.3

0.2

LA B L LA B L S B PR

O b I I 4 [41 1 IJ_[11 1 l) | l B S T l L —) IJ_L 1131 l) S S
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

a) Charged Current Evenis X,
IS
0.5
X2
0.4 S
0.3
E

o

0.2

0.1

i
0 0.4 0.2 0.3 0.4 0.5 0.6 0.7 0.8
b) Neutral Current Events X,

PRI B B RN G BEDT. AU ST T R S| PRI IN NN VRTINS SN G

Q

Figure 1: Locations in 2D parameter space of a) 5000 charged current events b) 5000 neutral
current events

The procedure outlined above hinges on the appropriate choice of extracted parameters.
This choice is far from obvious, but will not be discussed in this paper. The following sections
assume the completion of Part 1 of the classification proceedure and go on to describe the
way in which a neural network can achieve Part 2.

2.2 The Simplest Case

[t is convenient to start with the simplest possible example and then generalise it. Consider the
extraction of two parameters from each hit pattern and the classification of hit patterns into
two classes; neutral and charged current events. As shown in Figure 1 the two parameters
extracted from a hit pattern then describe a point in the 2D parameter space. It can be
seen that, for the parameters chosen, neutral and charged current events fall in different but
overlapping regions of the space. The best extraction parameters are those for which this
overlap is minimised.

The simplest way of dividing the parameter space of Figure 1 into two regions (one for
each of the two event classes) is with a linear cut or decision boundary as shown. Events
lying above and to the left of the cut are then classified as charged current and those below
and to the right as neutral current. It can also be seen that with the rather poor parameters

parameter .
‘ network
vector ®—= put
mput W, y t

-2 @
X,
input weights bias
nodes &
output
node

Figure 2: A neural network for the simple 2 parameter/2 class example

chosen a lot of misclassification errors are made in this example. The next two subsections
describe how a simple neural network can assign a region/class to the parameters of a hit
pattern, and also how the network can optimally place the decision boundary to minimise the
misclassification error.

2.2.1 The Operation of a Feedforward Neural Network

A neural network to handle the 2 parameter/2 class example is shown schematically in Figure
2. ‘ ' '

The parameters are fed into and held in the input nodes X;. The weights w; enable a
weighted sum of the inputs to be fed into the output node Y. A bias § is subtracted from the
sum and a non-linear sigmoid function (see Figure 3) of this result is calculated by the output
node to produce the output of the network. The network is then carrying out the function:

-1
Y(X) = {l + exp — (Z wiX; — 3)] (1)
where X is the 2D vector of extracted parameters. An output of Y = 0.5 then corresponds to

Z 'wi)(,‘ =4

i.e. the input parameters specify a point that lies on a line in parameter space defined by u;
and 6. An output of Y > 0.5 means that the input parameters lie on one side of this line and
Y < 0.5 shows that they lie on the other side. Therefore, given a linear decision boundary
defined by w; and 8. the network provides a way of determining the region within which the
extracted parameter point lies.

2.2.2 Training a Feedforward Network by Backpropagation

Given a decision boundary in the parameter space the simple network described in the previous
subsection is able to assign the hit pattern to one of the two classes based on whether the
output of the net is greater or less than 0.5. On its own this is nothing special, but there

fx) 1
0.9

0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

: ””]””Tn”"'x'I”“[n—”l”n—P"'I””I””

1

Figure 3: The sigmoid function: f(z) = [1 + exp(~z)]~

also exists a network training technique, known as backpropagation, that enables the optimal
placing of the decision boundary, i.e the optimal setting of w; and 6.

Training the network to set its internal parameters requires the use of a training set of
hit patterns. This set should contain equal numbers of neutral and charged current events
to avoid artificially slanting the classification in favour of one class, and the true class of
each event must be known (this requires the data to have come from either Monte Carlo or
calibration). If a network output of Y > 0.5 is to signify a charged current event and ¥ < 0.5
a neutral current then this enables a target network output to be assigned to each hit pattern
of the training set:

For true charged current events Target T = 1.0
For true neutral current events Target T = 0.0

With p labelling the hit patterns in the training set then X7 are the extracted parameters
from hit pattern p and T? is the target output that-the network should try to achieve for that
pattern. With these designations it is then possible to define a training error E for a particular
~ set of w; and @ values.)

- 2
E(w;,0) = 3 SV (XP) - T7) (2)
_ P

With a network acheiving perfect classification then the network output Y (XP) for each hit
pattern p will be equal to the target output T? for that pattern and the training error E' will
be zero. The more the network outputs differ from their target values then the higher the
value of the training error. This provides a criterion for the setting of the internal parameters
of the network. The optimal values of w; and @ (i.e. the optimal positioning of the decision
boundary) are those which minimise the training error E. Starting with w; and 8 set randomly
between 0 and 1 then they are updated by gradient descent of the error function.

oF
Aw; = -9 GTU,
JF
Af = -9 ¥ | (3)

The 1 parameter above is known as the learning rate and controls the size of the update steps
(its value is typically about 0.01). Iteration continues until the error function has converged
to its minimum value. Although gradient descent is the simplest weight update method it
works well in most cases. [f convergence is slow or there are problems with local minima of
the error function then extensions to gradient descent are available (e.g. the addition of a
momentum term). Calculating the update partial derivatives explicitly yields

Aw; = —n Y [Y(X?) - TP (XP) - 1]Y (XP) X!

Af =7 [Y(XP) - T7I[Y (XP) - 1]Y(X") (4)
p

For the simple case under consideration these two subsections have shown how a neural
network can optimally set a linear decision boundary in parameter space by altering its internal
weights and biases and then with these internal parameters frozen can assign a class to any
new input vector presented to it. '

2.3 Extending the Sim.plest Case into Something Useful

What has been described so far is no more than a linear discriminant and there exist a
number of equally effective and much simpler statistical techniques for performing the same
task (e.g. the Fisher discriminant {Sch92]). The simplest case can easily be extended to handle
more than two extracted parameters and an increased number of event classes, but the real
advantage of using a feedforward net, and the point at which it leaves the competition behind,
comes when it is generalised to form non-linear or curved decision boundaries.

2.3.1 More Inputs and More Outputs

The first generalisation required of the simplest case is to enable the network to deal with
more than two extracted parameters. With n parameters then the number of input nodes X;
and the number of weights w; increases from 2 to n and all the mathematics is identical. This
is a trivial extension and simply involves moving from a 2 dimensional parameter space with
a single line cut to an n dimensional space with a single hyperplanar cut.

With more than two event classes (e.g. the addition of a background class) then the
required extensions are a little more involved but still simple. To distinguish ¢ classes then
c output nodes are required (as opposed to 1 node for the 2 class example which is a special
case) as is illustrated in Figure refmediumnet. There are now weights w;; connecting every
input to every output where ¢ labels the input node and & the output node and each output
has its own bias 8. The vector of output values Y} is calculated from the inputs X; by the
logical extension of Equation 1

Yi(X) = [1l+ exp — (Z wig X; — 01«:)] (5)

Each output Y} corresponds to a particular class and an input parameter vector, once fed
through the net, is assigned to the class corresponding to the highest output. To see more
graphically how this works consider the two parameter simple example, but now with classi-
fication into three event classes i.e. a network with two input and three output nodes. For
each output the equation Y, = 0.5 once again corresponds to a line in parameter space as is
shown in Figure 5. For each output the argument of its sigmoid function

Qo —>
W,
Y,
E T - - /
parameter —p O . network
vector X ¢ N
i . 5 . . GUIDLL
input . . '
.) 0,
* venmt
* W’IC . -
// Y.
X,
input weights biases
nodes ' &
output
nodes

Figure 4: The extension of the simple example to n inputs and ¢ outputs

> wikXi — 6k

is simply the signed distance from this line. Since the sigmoid is a monotonically increasing
function then each output value Y} is a nonlinear measure of the signed distance of the input
parameter vector from the line labelled by k. Therefore, by assigning the class of an input
vector to that of its highest output the parameter space is broken up into regions. As shown in
Figure 5 for the 3 output example each region is labelled by the line from which it is furthest
i.e. region k corresponds to output Y; being highest. It is in this way that the weights w;;
and biases 6, break up the n dimensional parameter space into ¢ regions. .

To train such a multioutput network now requires a ¢ dimensional target vector for each
hit pattern. This vector has 1 in the slot of the target class and all other entries are zero. An
error function is defined as a direct extension of Equation 2 with the output Y and target T?
now being vectors.

Blwi,6) = 5 3 [Y.(X?) - 17 (6)
P

The optimal setting of w;; and ;. then proceeds by gradient descent of this error function as
before.

2.3.2 Non-linear Boundaries and Hidden Nodes

Even with the extension to n extracted parameters and c event classes the network described
so far is still just a linear discriminant with hyperplanar region boundaries. With a further
extension the feedforward network becomes a non-linear classifier with curved region bound-
aries. This is achieved by inserting a layer of hidden nodes between the input and output

fine 1 iine 2 lin

Figure 5: The decision regions for the 2 parameter/3 class extension to the simple example.
Each output & has an associated line k given by 3, wyX; = . Class &k then corresponds to
the region which is most distant from line k i.e. its distance is most positive.

nodes as shown in Figure 6. The network has n inputs X;, h hidden nodes H; and c outputs

Y. The input parameters are fed through to the output nodes by the logical extension of the
previous examples. Each hidden node calculates a weighted and biased sigmoid of the inputs
with weights w;; and biases §; and then each output node calculates a weighted and biased
sigmoid of the values from the hidden nodes using weights W;; and biases ©. Overall then
the network executes the function

-1 -1
Yk(z(__):: 1+exp— Zij‘l-}-e.\’p— Zw,‘jX,'-—tgj - O (7)
] i .
Alternatively this can be expressed as
' ~1
Hi(X)=|l+exp— Z wi; X; — 8
-1
Ye(X) = |1 +exp— | > WiH;(X) - Oy , | (8)

J

With two input parameters the straight lines of Figure 5 now become more general curves with
corresponding curved region boundaries. This is entirely due to the use of the sigmoid function
which, until now, has been an unnecessary encumbrance. To demonstrate this mathematically
is rather messy and not particularly illuminating.

The training of such a multilaver network uses the error function of Equation 6

_ 1 ,
E(wij.ej:. W Q) = 5 ; (Y(X?) - TP (9)
and the weights and biases are updated by the usual gradient descent equations

OE |

W

AW, =—pg

-~}

1
Wy
- .i\:—
parameler
pare {1 Xz
vector .
input .
W
-z @
X,
input input
nodes to
hidden
weights

8, . :
.\ W” ®l
Hm' -
o Y,
: . . network
. . . ouim!
0,
0 W o —
]
2
° Y,
hidden hidden output
biases to biases
& output &
hidden weights output
nodes nodes

Figure 6: A fully fledged feedforward network with n input, A~ hidden, and ¢ output nodes

AOy

Aw;;

Ab;
It is instructive to calculate these partial d

P __
()k——

7 = H][1 - HY] Zk:ijé"Z

VP - YPIYY - 7]

_, 9F
na@k

- Jw;;
__OFE
7 36,

erivatives explicitly. First make the definitions

(10)

(11)

(12)

where 4], is known as the error of output node Y for pattern p and 6;? is the error of hidden
node H; for pattern p. With these assignments then the updates for the weights and biases

become
A I"Vj 2

Ay

Aw ij

’ P
p
= nZJﬁ-’Xf’
»

A8 =-n> o _ (13)
P

These equations have a rather satisfying interpretation. The updates for the hidden to output
weights Wjare formed by combining a hidden node value H} with an output node error &}.
These output node errors are then weighted and summed to form hidden node errors. The
input to hidden weights w;; are then updated by combining an input node value X7 with
a hidden node error 5;-’. Overall then network training proceeds by propagating extracted
parameter vectors from input to output and then backpropagating errors from output to input
in order to update the weights and biases. Hence the algorithm is known as a feedforward
neural network with backpropagation.

The extension of the network to include more than one hidden layer is perfectly feasible,
but almost certainly unnecessary for SNO purposes. This follows principally from a theorem
[HSW90] which states that any functional mapping can be approximated to arbitrary accuracy -
by a feedforward neural network with just one hidden layer. The proof of this involves
demonstrating that the sigmoids of an infinite number of hidden nodes form a complete
set of functions. However, second and third hidden layers are used in many applications,
as a task can often be accomplished with less hidden nodes overall by using more hidden
layers. Since the extraction of parameters from hit patterns constitutes a significant amount
of preprocessing, the decision regions required of a network for SNO event classification are
likely to be singly connected, simple spaces requiring only one hidden layer to form them.

The inclusion of a hidden layer has introduced a second free parameter into the network
algorithm (the learning rate 7 is the first) - the number of hidden nodes has to be chosen. With
too few hidden nodes there is insufficient flexibility to form the necessary decision boundaries
and with too many a process known as overtraining can occur, where the network starts to
learn the features of individual input patterns rather than the characteristics of the probability
distributions from which they are drawn. To understand this overtraining an analogy with
curve fitting is useful. Any physicist knows the danger of fitting a set of data points with
a curve that has too many adjustable parameters. The result is a curve that fits the points
perfectly but does not reproduce the underlying distribution from which the data was taken.
Just the same problem occurs with the adjustable weights and biases of the network and the
number of training patterns. To avoid overtraining the size of the training set of input vectors
must be significantly larger than the number of weights and biases of the network. If W is the
number of weights and biases and ¢ is average network error per input pattern (the network
error being given by Equation 9 for a set of patterns independent of those used to train the
network) then it can be shown [HKP91] that the number of training patterns P should satisfy

P>~ E—‘i (14)
€
in order to avoid overtraining. _ _

Whilst there exist some very elegant pruning and growing techniques to kill off or add
hidden nodes during the training process, a network for SNO event classification probably has
no need of them. This is once again due to the simplicity of the required decision boundaries
and the limited number of hidden nodes required to form them. Typically the task of SNO
event classification requires a number of hidden nodes that is of the same order as the number
of input nodes and often considerably less. So long as the inequality of Equation 14 is satisfied,
the classification ability of the network will not be compromised by having more hidden nodes
than is strictly necessary. '

Network
Assignment

CC NC
CC | 3684 1316

True Class
NC | 1274 3726

Figure 7: Example of a confusion matrix for a testing set consisting of 5000 charged current
and 5000 neutral current events

2.4 Calibrating the Network and Assigning Errors
2.4.1 Calibration

Once the network has been trained, it should be tested using a labelled data set independent
of that used for training. The results of this testing are best displayed using the charmingly
named confusion matriz. An example of this for a testing set comprising 5000 charged current
and 5000 neutral current events is shown in Figure 7. The rows of the matrix are labelled by
the true class of the events, and the columns by the network assignment. The matrix entry
(7,7) is the number of events that belong to class : and which the network assigned to class
j. The goal of perfect event by event hit pattern classification is then a diagonal confusion
matrix.

Probably the single most useful number that can be extracted from the confusion matrix
is an estimate of the fraction of class assignments that the network gets right. This is known
as the overall network purity. If pis the true probability that the network assigns a randomly
selected pattern correctly, then the number of correct assignments C from a testing set of N
patterns has a binomial probability distribution

PIC) = s Pl = 2 ™° (15)

The expectation value of C is then Np and so 1—% is an estimate of the network purity where
C is given by the trace of the confusion matrix. Since the variance of the binomial is

o? = Np(1-p)

it is possible to put an error on the purity estimate by using the unbiased estimate of the
width of the distribution. Bringing all this together. the fraction of class assignments that
the network makes correctly can be estimated as

. 1 J "N\132
Network purity = Fraction correct = l% + [N 7 1%— (1 - %)] ? (16)

where the 1o error is understood to be the width of a binomial rather than the usual Gaussian
width. For the testing results of Figure 7 the network purity is

(74.1 +0.4)%

This formalism can obviously be extended to other relevant estimates (e.g. the fraction of the
time that the network assigns a hit pattern to class 1 correctly).

10

300

L
L
I
250
I Totol
L
i M -
L ; ‘ L
200 F !
: 3
L
150 3
i
100
50
0

movable symmetric threshold

Figure 8: A histogram of the testing set output values of a network with one output node
trained to distinguish between neutral (NC) and charged (CC) current events. The two
hatched histograms show the output values for the 5000 true NC and 5000 true CC events.
The sum of these two histograms is also shown.

Figure 8 shows a histogram of the network output values for the same testing set used
to produce the confusion matrix of Figure 7. The network has a single output and has been
trained to distinguish between neutral current (NC) and charged current (CC) events. The
testing set consists of 5000 NC and 5000 CC events. Events with an output value greater
than 0.5 are assigned to the CC class and those with an output less than 0.5 to the NC class
and in this way the confusion matrix of Figure 7 is produced.

As will be shown in the next section, the numerical value of an output for a particular
input pattern is a measure of the network’s confidence in the class assignment it has made.
For the single output network of Figure 8, dutput values around 0.5 indicate that the network
is not confident about the class assignment, and confidence increases as the output value tends
to zero or one. For a multioutput network, the closer a particular output value is to unity, the
more confident is the class assignment. This provides a method of increasing network purity
at the expense of overall efficiency. A multioutput network assigns an input pattern to the
class corresponding to the highest output value, but if this value fails to exceed some threshold
then the event can be thrown out as being unclassifiable. Similarly, a pair of thresholds for"

11

100

7 Purity

95

30

85

80

75

70

65

LALLM L L M O I Y I B B AN B B B

L L —L 141 —]4L

20 40 60 80 100
% Efficiency

[
L
i
i

60

o

Figure 9: The variation of network purity with overall efficiency for the testing set of outputs
from Figure 8 as the symmetric threshold is moved. The error bars vary from 0.4% to 1%

and are not shown.

a single output network can be moved out symmetrically from 0.5 as shown in Figure 8 so
that events falling between the two thresholds are discarded. The efficiency of a network at a
particular threshold setting is simply the fraction of events which are not discarded. As the
threshold becomes more stringent and efficiency drops then the network purity will increase.
This purity can still be calculated from Equation 16 with the appropriate values for C' and
N. Figure 9 shows how network purity varies with efficiency as the symmetric threshold is
moved for the example outputs of Figure 8.

Unless the output histograms for true NC and true CC events (see Figure 8) are sym-
metric about 0.5, the thresholding proceedure just outlined for the single output network will
result in a biasing of the classification. This bias can be determined from the testing set and
‘thus accounted for.

2.4.2 Assigning Errors

The preceeding sections have shown how a neural network can achieve the task of event by
event hit pattern classification once a set of extracted parameters have been decided upon,
and how the performance of the network can be calibrated. Nothing has yet been said about

12

the assignment of errors to the classification. It is not clear what an error assignment to a
series of event by event classifications means or how it might be interpreted, but such an error
specification could be based on either the network purity obtained from the testing set or by
using the following theorem: for a network trained on an infinitely large pattern set then the
output Yi(XP) for a particular pattern is the probability of that pattern belonging to class k
[Gis90]. To demonstrate, this consider the network error of the output corresponding to the
class k)
Bi= 5 " [V(XP) = T

124

For an infinitely large training set this error becomes

EL = % / (P(class k| X) [YHX_) — 1% 4 P(class k| X) [Yi(X))?) dX

where P(class k|X) is the probability of the input X belonging to class k& and P(class k|X) is
the probability that it doesn’t. A necessary and sufficient condition for a trained network is
that the derivative of this error with respect to the output Y, be zero. Therefore

[(Prctass k1) () - 1 + PERSS FIX) Yi(X)) dX = 0

With a more rigorous derivation it can be shown that this equation requires that the integrand

be zero and so
P(class k| X)

P(class k|X) + P(class k|X)

Since the sum of the two conditional probabilities must be unity then

Vi(X) =

Yi(X) = P(class k|X) - (27)

This shows that the actual numerical value of the output corresponding to class k is the
probability of the input vector belonging to class £. In the parlance of Bayesian statistics
the network is calculating an a posterior:i probability for each class, and as such is behaving
as an optimal Bayesian discriminant [DH73] . Although this has been demonstrated for an
infinitely large training set, it can be shown [HP90] that as the size of a training set increases
then convergence to Equation 17 is rapid and the result is essentially true for even a moderately
large number of training patterns. If a proceedure for assigning errors to a set of event by event
classifications can be found then either the result of Equation 17 or the calibrated network
purity should form its basis.

3 Statistical Hit Pattern Recognition

The preceeding sections have shown how a feedforward neural network can achieve event
by event hit pattern classification. Whilst this is useful for supernova events it is not the
prefered method of analysing solar neutrino data. The next few sections will demonstrate
such a method.

3.1 The Task

Given a set of hit patterns, the task is to ascertain the fraction of the set which belongs to
each event class. Once again this is achieved in two parts:

13

1. Extract a number of parameters {rom each hit pattern in just the same way as for event
by event classification.

2. Feed the extracted parameters through a trained network and fit the distribution of
output values to the output distributions obtained from testing. Hence find the fraction
of the data set belonging to each event class.

Once again it will be assumed that Part 1 has been achieved and the next section will
go on to describe Part 2. '

3.2 The Method

The network topology and training for statistical pattern recognition is identical to that
already described for event by event recognition. It is convenient, however, to interpret the
resulting algorithm in a somewhat different way. Rather than viewing the network as making
a decision on each input pattern based on the network output, it is better to think of the
network as carrying out a transformation of the extracted parameters from the n dimensional
input space to an ¢ dimensional output space. The training process then maximises the
separation in output space of the probability distributions for each event class. The network
outputs can then be viewed simply as c extracted parameters which the network has optimally
chosen given the hit pattern information that is presented to it.

Once a network has been trained, its calibration proceeds with an independent testing
set as before. The outputs of each testing pattern are then normalised so that they sum
to unity. This does not apply to a single output network, but is necessitated generally by
the probabilistic interpretation of the outputs described in Section 2.4.2(this interpretation
means that the network output sum will already be close to unity before normalisation).
With ¢ as the number of output nodes the output values now lie within an ¢—1 dimensional -
subspace. This subspace is binned and the number of events belonging to class k falling into
the bin labelled by Y is used to produce the distribution R(¥|classk) for each event class.
Once normalised these distributions are estimates of the true underlying probability densities
p(Y|class k) of the outputs for each class.

Armed with these R(Y|class k) distributions a real data set can then be analysed. The
real data is fed through the network, the outputs for each hit pattern are normalised to unity,
and the resulting output distribution is binned in the same way as the testing set to produce
the real data distribution D(X). With N events in the real data set then the fraction aj of
events belonging to class k can be estimated by a x? fit to the form

DY)=N Z o R(Y|class k) (18)
- .

with the constraint

Za‘k =1
k

The errors which should be used in the * fit are the theoretical statistical uncertainties in
the R(Y|classk) distributions. With the reasonable assumption of Gaussian deviations of
R(Y]|class k) from p(Y|classk) then the error of the bin labelled by Y is

o?(Y) = > R(Y|classk) (19)
~

The statistical errors on the fraction estimates a;. are obtained from the inverse error matrix
in the normal way for a \? fit.

14

4 Further Considerations

Sections 2 and 3 have shown how event by event and statistical hit pattern recognition can
be realised by a feed forward neural network technique. So far all error estimates have been
statistical. The next two sections describe how systematic errors may be assigned and then
how calibration data might be used to give confidence in the algorithm.

4.1 Systematic Errors

For a network trained on Monte Carlo data, systematic errors will almost certainly dominate
those from statistical sources. In event by event classification these systematics influence the
purity estimate as well as the relevance of the Bayesian a posterior: result of Section 2.4.2.
In'statistical classification the R(¥|class k) distributions are affected [DC92). A SNO Monte
Carlo contains a number of semi-free parameters, either artificial parameters like ESTEPE
and AE in the EGS4 code or quantities like the plhoton scattering length in water and acrylic
absorptivity that come from the physics. By varyving these semi-free parameters within rea-
sonable bounds and producing as a result a number of testing sets with different parameter
settings, the variation of the purity and R(ilclass k) distributions can be assessed and sys-
tematic errors assigned. It is likely that an independent systematic error can be assigned to
the variation of each semi-free parameter, but correlations may need to be catered for. This
method for calculating systematic errors for a Monte Carlo trained network is far from ideal,
but probably the only way that it can be done.

4.2 The Use of Calibration Data

Confidence in a neural net event analysis will hinge on the use of calibration data. This data
can principally be used to calibrate the Monte Carlo. It will probably not be possible to.
produce a realistic charged current data set, as the fine hit pattern details that the network
picks up will not be reproduced by cobbling together a charged current NHIT spectrum from
a beta decay source. However, real neutral current data can easily be produced and together
with the various other sources can be used to calibrate the Monte Carlo which can subsequently
be used to produce appropriate training and testing pattern sets for the network. A second,
and more convincing, check on the neural network method involves training the net on Monte
Carlo data sets that can be reproduced by calibration sources (e.g. a neutral current and a
beta decay data set). The network is then tested on both Monte Carlo and calibration data
and the agreement (or otherwise!) of the two testing results gives information on both the
accuracy of the Monte Carlo and the trustworthiness of the network.

5 Conclusion

This paper has detailed how the feedforward neural network technique can be used for both
event by event and statistical hit pattern classification. Methods for statistical and systematic
error analysis have been described as well as an indication of how calibration data might be
used. The algorithm itself is well understood, but more work needs to be done clarifying the
error analysis and, most importantly, finding the best set of parameters to extract from the
hits patterns.

An excellent neural net simulator known as SNNS [Zel95] and produced by the University
of Stuttgart is available free via anonymous FTP from ftp.informatik.uni-stuttgart.de.
[t handles feedforward networks as well as many other neural algorithms and has a particularly
good X-Window interface.

References

(BT92]

[DC92]

[Den92]

[DH73)

[G1§90]
[HKP91]
[HP90]
[HSW90]

(Pet92]
[Sch92]

(Zel95)

Wayne S. Babbage and Lee F. Thompson. The use of neural networks in y-w°
discrimination. Nuclear Instruments and Methods in Physics Research A, 330:482—
486, 1992.

The DELPHI Collaboration. Classification of the hadronic decays of the Z? into b
and ¢ quark pairs using a neural network. Physics Letters B, 295:383-395, 1992.

Bruce Denby. Tutorial on neural network applications in high energy physics: A
1992 perspective. In Proceedings of the Second International Workshop on Soft-
ware Engineering. Artificial Intelligence, and Ezpert Systems for High Energy and
Nuclear Physics, pages 287-325, La Londe les Maures, France, 1992.

Richard O. Duda and Peter E. Hart. Pattern Classification and Scene Analysis.
Wiley-Interscience, 1973.

H. Gish. A probabilistic approach to the understanding and training of neural
network classifiers. In Proceedings of the 1990 IEEL International Conference on
Acoustics, Speech, and Signal Processing, volume 3, pages 1361-1364, April 1990.

John Hertz, Anders Krogh, and Richard G. Palmer. Introduction to the Theory of
Neural Computation. Addison Wesley, 1991.

J.B. Hampshire and B. Pearlmutter. Equivalence proofs for multi-layer perceptron
classifiers and the Bayesian discriminant function. In Touretzky, Elman, Sejnowski,
and Hinton, editors, Proceedings of the 1990 Connectionist Models Summer School,
San Mateo, California, 1990. Morgan Kaufman.

I[{. Hornik, M. Stinchcombe, and H. White. Universal approximation of an un-
known mapping and its derivatives using multi-layer feedforward networks. Neural
Networks, 3:551-560, 1990.

Carsten Peterson. Pattern recognition in high energy physics with neural networks.
In L. Cifarelli, editor, QCD at 200TeV’, pages 149-163, 1992.

Robert Schalkoff. Pattern Recognition; Statistical, Structural, and Neural Ap-
proaches. Wiley, 1992.

Andreas Zell,'et al. SNNS User Manual, Version 4.0. University of Stuttgart,
Institute for Parallel and Distributed High Performance Systems, 1995.

16

