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1 Introduction

Calculations of -y-ray shielding which employ the Monte Carlo method run into

severe limitations when the attenuation reaches many orders of magnitude. In order

to achieve any useful statistical accuracy a large number ofhistories must be followed

in order that a reasonable number of-)r-rays survive. As an example, ifan attenuation

of 10*’ is to be calculated one needs to follow 10’ histories in order to expect a

statistical accuracy of 10%. This is difficult to achieve in a reasonable CPU time,

and an attenuation of 10~9 is prohibitive.
The method of weight splitting has been proposed to circumvent this problem

and for the simple shielding calculation required for the SNO detector it is admirably

suited. This method avoids the expenditure of a large amount of CPU time on

following uninteresting histories - those many m&ny histories which simply terminate

by the absorbtion of the photon or its scattering to low energy.
Weight splitting is a technique which must be used with some care. It is

possible to design problems where misleading results may be obtained. However,
for problems where the material is uniform, such as the SNO detector, there should

not be any difficulty. The technique of weight splitting does not introduce bias

into the results: for a sufficiently large number of histories the weight-split problem
converges to the same answer as the normal calculation.

2 CPU Time Considerations

The standard monte carlo method works by comparing the number of photons
started with the number which survive transport through the absorbing material.

For severe attenuations it is clear that most photons will not make it through the

material. And yet it is precisely these photons which do not make it that take up

most of the CPU time.

The probability of survival may be described as a weighted integral over the

entire phase space of photon trajectories which begin at the starting point and end

up at the other side of the radiation shield. This integral depends on the exponential
nature of survival as well as the geometry of phase space. The monte carlo problem
evaluates this integral by the method of random sampling in phase space. This



is particularly inefficient with respect to CPU time, at least in the standard monte

carlo, because the sampling scheme used emphasizes an uninteresting region of phase
space-namely the part that leads to photons which are absorbed. The efficient use

of CPU time requires that the sampling be concentrated in the region where photons

have a reasonable chance to survive.
As an example consider trajectories through a one-dlmensionaj space where

a pure exponential law applies with a known absorbtion coefficient, k. The monte

carlo problem could be set up with a number ofequally spaced interval! say of length
q. This would lead to a probability of survival through each interval of exp( -kq) and
the calculation could be set up to sample this probability as the photon passes each

interval. The number of photons surviving the entire thickness, say », then gives

the desired probability (with some statistical error). However this is CPU time

wasteful for the simple reason that the answer to the problem is known exactly,

namely, exp(-Ai). So why do a monte carlo calculation for this problem? In this

case a monte carlo calculation is pointless. However, when the number of spatial

(and other) dimensions increase, the problem no longer yields a simple analytical

solution. Here the method of sampling the space can be helpful but the cost is to

introduce statistical uncertainty into the result.
It is already known that the radiation follows an exponential or near expo-

nential law. The object of the calculation is to investigate the more subtle effects

caused by the many possible trajectories in phase space that can be followed by the

photons that do survive. Therefore it seems reasonable to emphasize these kinds of

histories in the calulation.

3 Weight Splitting

The weight splitting method works as follows. The space that a photon traverses

is divided into zones with weights to be set appropriate to the problem. A photon
which survives a zone and passes to the next zone is allowed to generate two (or
more) duplicate photons each of which have half (or the appropriate fraction of) the

weight of the original. This leads to an exponential like decrease in the statistical

weight of the surviving photons. At the same time, if these zones and weights are

set up correctly, the probability of a photon surviving the absorber is very good.
This allows the possibility of sampling many trajectories which survive . but now

the exponential aspect of the problem is built into the scheme of weights. In effect

the monte carlo calculation determines the deviation from the "exponential" law

built into the weights. If the weights are near to the actual exponential behaviour

then the calculation will be efficient in its use of CPU time. �

4 Estimation of the Variance

In this section the variance is estimated under the assumption that the attenuation

is purely exponential. One layer is considered first; then several layers, and finally,
several layers with weight splitting.



4.1 One Layer

Let N T-rayi start from A and see how many reach B. Let the probability for a

single T-ray to get through the layer of material to B be a. Then the probability of

n -y-ray» reaching A is given by the binomial distribution:

W=(N)^-^N-n(1)N
n

The mean number of photons reaching b is

<n>=^p(n)n=aN (2)

The variance in < n > is

<73 =< n3 > - < n >3= Na(\ - a) (3)

These last two equations are well known properties of the binomial distribution.

Now consider the same layer but this time let a be unknown. If we want

to determine a by measurement, we could start N -y-ray »t A and see how many

reach B, calling this number n. The from equation (2), a measure of a is

a = -n (4)
N ’ ’

There will be an uncertainty 6a in the measurement because of the variance in n.

Thus, using equation (3),

^_^_ff_ v/Na(l - a]
^
^/NQ(T~Q)

a n n n Na
(5)

4.2 Several Layers

Now consider several layers, first without weight splitting: assume the attenuation

in each layer is a; the overall attenuation is o" = a. To determine the variance in

the overall attenuation consider two methods:
i)layer by layer:

1’* layer as above:

^-^2~’ layer:
(6)

etc.

Then a is determined by d = fl0*- u &u l^y6" &re the SAme thi^"fi"

a, = Q vi and a = 0*1 and
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ii) consider one thick l&yer with attenuation, a, then,

6a
_

ft - a

~a = V Na

which gives the s&me result &s before.

4.S With Weight Splitting

Now consider weight tplilting: ftt each boundary, if n photons arrive,.then send gn

photons to the next layer. Analyse this layer by layer:

2’"’ layer: ___ ____
^ = ^ = Jffr. ^ = v/^ = x/S (9)

If all the Qi’i are equal then
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With ak = a,
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(^ - ^alA ^-1 (12)
° \W ���

(The subscript, ^, has been introduced to indicate that this is specifically the weight

splitting case.)

5 Minimizing the Variance by Maintaining the Flux

It is possible, using the scheme outlined in the previous section, to imagine a number

of strategies for setting the weights. If all the weights are fixed equal (to one) then we

have the standard monte carlo with its limitations for deep penetration calculations.

Another possibility is to set the weights so that the number of photons followed

increases with distance through the attenuator. This strategy suffers from the flaw

thai all the CPU time is merely thifted from the incident aide of attenuator to the

exit side and therefore still ignores the important region of the phase space.

The best strategy is to choose weights such that the flux ic maintained ap-

proximately constant throughout the attenuator and this can be proved as follows.

5.1 Proof that the Variance is Minimized by Maintaining the Flux

Let the attenuator be divided into equal length zones and let the weights be set so

that the ratio of weights between adjacent xones be constant. This corresponds to

an exponential growth in the number of photons followed if there is no attenuation.

If the multiplication factor associated with each zone change (determined by the

ratio of weights) is g and the attenuation for the lone is o. then after n lones the

probable number of photons foUowed is (ga^ for each photon started. This number

can grow, attenuate or be constant depending on whether ga is reipectively greater

than one, less than one, or equal to one.

6.1.1 Estimate of CPU Time

When weight splitting is used, the CPU time required for each started photon is

greater than when weight splitting is not used. This is simply because more photons

must be followed. However, since weight splitting improves the variance on the

measured transmittance, it seems reasonable to imagine that the variance might be

reduced even when the CPU time is not increased, and this conjecture is correct.



Were it not, then weight splitting would have no advantage over limply increasing
the number of started photons.

The CPU time required for a problem is proportionAl to the number of pho-
tons transported and to some approximation it if also proportional to the mean

path length of the photons:

�4^^’i(-A�.^�> ("’

for a layer of thickness x.

Since the attenuation in this layer is a = e"^,

(^{1+___,��} (14)
A 1�0

If there are k layers then the overall attenuation is a = Q* and the time for the first

layer is

^^r^i’"^- (l5)

5.1.2 Time with Weight Splitting

With weight splitting, as each boundary is crossed g photons are generated. The

time for the 1" layer is 1, given in equation 15, above. The time for the second layer
would be at since only aNo photons survive the first layer, but with weight splitting
this becomes (ag)t\ the 3rd layer requires (o^)2!, etc. The total time is

(1 - (ag)*
^=t+Qfft+(aff)2(+...+(Q^O*-l(= t

\-ay
for 9a i- 1 (16)

tkag for go = I

Substituting 0=0* and equation 15 gives,
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From this can be deduced the number of photons that can be transported for

a given CPU time, T:
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The number of photons transported, N, in the same time, T, when no weight

splitting if used can be found from equation 18 by putting g = 1 and thus the

ratio of photon* transported in timc,T, is

^w _

~jr~
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The variance with weight splitting if given in equation 12 where N^y photons
were started. This can be written in terms of N, the number of photons for the

no weight splitting case, by substituting equation 19 into equation 12. Thu« for

the same CPU time which would give a variance given by equation 10 (no weight

splitting), the variance obtained with weight splitting is
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The ratio of errors with and without weight splitting for the same CPU time

is obtained from equations 20 and 10:
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S.I.3 Minimum Variance

The minimum variance for a given CPU time can be found by taking the derivative

of equation 22 with respect to g and letting it to zero. ga^ = 1 i» a solution. This

is shown graphically in Figure 1. The ratio of errors given by equation 22 is plotted

against ga^ for three values of a: 10~3, 10*6, and l0~9. The minimum is at

ga^ = 1. With this value of ga^ the gain in photon number exactly compensates

the exponential decay so that the flux is maintained constant.

It can be seen from the figure that the improvement in the errors can be

substantial, particularly when the attenuation ii many orders of magnitude. It
should be noted that for a given error the improvement in CPU time is the square

of the quantity plotted in Figure 1.

The number of layers into which the problem ii divided also influences the

variance reduction. A good method is to chore k such that each layer attenuates

by a factor of two, and then set 9 = 2. In this case Equation 22 becomes

(^L
(fa) 0.7t./a (23)



6 Conclusions

The method of weight splitting provide! an enormous gain in the amount of CPU
time required to solve -r-ray Attenuation problem*. The optimum scheme for setting
the weights is to set them so that the splitting compensates for the exponential
attenuation, thus maintaining a constant flux of photons. Of course, weight splitting
reduces only the statistical error in the calculation; it does not improve systematic
errors.


