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Abstract

In this thesis, we present an overview of numerical methods and approximations for calculating solar

neutrino fluxes at the Sudbury Neutrino Observatory in three flavours. We find that the daytime flux

is well approximated by a three flavour adiabatic propagation with a two-flavour jump probability.

We also introduce variable step size algorithms for the numerical propagation of neutrinos through

the Sun. A formula for the survival probability of solar neutrinos that have traversed the Earth is

presented in three flavours and the dependence on θ13 is demonstrated. It is then shown that an

experiment for low energy solar neutrinos would provide the best constraints on θ13 and that there

is a theoretical dependence of the day-night asymmetry on θ13 but that the effect is too small to

be measured with current experiments. Finally, we show the effect of matter above an underground

detector, such as the Sudbury Neutrino Observatory, on a measurement of the day-night asymmetry

and conclude that the night bin should be longer than is implied in the literature.
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1 INTRODUCTION

1 Introduction

In this thesis, we seek to examine various methods for calculating solar neutrino fluxes in the context

of the Sudbury Neutrino Observatory (SNO) [2]. Throughout the thesis, we will present an overview

of most of the methods and approximations available in the literature for calculating these fluxes

as well as introduce our own, new, methods. We will examine the accuracy of these calculations

with the goal of providing the best tools for calculating solar neutrino fluxes in three flavours, using

neutrino oscillations. There is thus not much need for a distinct literature review, as this process

will be carried out in the body of the thesis.

1.1 Neutrino Oscillations

The possibility that neutrinos oscillate was first suggested by Bruno Pontecorvo in [3], in analogy to

oscillations in the Ko − K̄o system of the quark sector [4], which then implied that neutrinos must

have mass. It was not until 1998 that the SuperKamiokande experiment [5] conclusively showed that

neutrinos oscillate. Neutrino flavour transformations (a strong argument for neutrino oscillations)

were then shown by the Sudbury Neutrino Observatory [6] to be the conclusive solution to the

longstanding solar neutrino problem. There had been an inconsistency dating from Ray Davis’

experiment in 1968 [7] between the measured solar neutrino flux and that predicted by the solar

models.

Neutrino oscillations occur because neutrinos are produced in weak eigenstates that are quantum

admixtures of the eigenstates of the Hamiltonian. The amount of mixing is governed by the mixing

matrix, which can be parametrized in terms of three angles and a complex phase, in exact analogy

to the CKM matrix in the quark sector. The three mixing angles, usually labeled θ12, θ23 and

θ13, govern the amplitude of the oscillations. The complex phase allows for the possibility of CP-

violation. Finally, the differences in masses squared between the energy eigenstates determine the

wavelengths of the oscillations. As there are three known flavours of neutrinos, only two of these

mass squared differences are independent, and we have chosen to label them ∆m21 ≡ m2
2 −m2

1 and

∆m31 ≡ m2
3 − m2

1. Neutrino oscillations are then governed by six different parameters.

The first generation of neutrino oscillation experiments were designed to conclusively demonstrate

the effect, but it has turned out that they have been able to measure the mixing angles to an

acceptable degree of accuracy. In fact θ12 and ∆m21 have been well constrained by solar and

reactor neutrino experiments ([8], [9]), whereas θ23 and ∆m31 have been constrained by atmospheric

neutrinos [10]. The current focus for future experiments will then be to measure the last remaining

1
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mixing angle θ13 on the one hand, and verify the possible existence of a non-zero complex phase on the

other. The current accepted values are tan2(θ12) = 0.45 and ∆m21 = 8×10−5eV 2 from [8]. We have

used slightly obsolete values throughout the thesis, tan2(θ12) = 0.42 and ∆m21 = 7× 10−5eV 2 from

[6] when we refer to best-fit values. Similarly, one finds ∆m31 = 2.8× 10−3eV 2 and sin2(θ23) = 0.52

from [11] although we have used slightly different values in this thesis, ∆m31 = 1 × 10−3eV 2 and

sin2(θ23) = 0.5, as the best fit values.

Neutrino oscillation experiments have thus progressed from showing that oscillations occur to

measuring the parameters involved. The main focus of this thesis is then to examine and provide

theoretical tools to model solar neutrino oscillation accurately so that the mixing angles can be

constrained further with the next generation of experiments. Our work was started by considering

the possibility of measuring θ13 with solar neutrinos, in particular by using the day-night asymmetry,

and evolved into an overview of numerical methods.

We will thus examine various approximations and numerical procedures for the calculation of

neutrino oscillations. In particular, we will examine the adiabatic approximation [12] and the correc-

tion due to the Jump Probability ([13], [14]), and how it can be applied in a three-flavour framework.

We will also consider the effect that the Earth has on solar neutrinos and the resulting day-night

asymmetry that is expected in solar neutrino experiments. Our work on this subject is close to that

of [15] and [16], and we present an improved formalism for these types of calculations as compared

to [16].

1.2 Outline

We will start by introducing the theoretical framework of neutrino oscillations in section (2.1). The

formalism for treating neutrino oscillations in matter will then be presented and discussed thoroughly

in the two-flavour framework.

Section (2.2) will then provide an overview of neutrino oscillation calculations through arbitrary

media done numerically followed by various approximations presented in the literature. In particular,

the case of adiabatic propagation will be examined thoroughly as well as the extension using the

Jump probability. Section (2.2) will not contain any new material, but we believe that the material

is presented in a way to provide the reader with a good intuition about neutrino oscillations.

In section (2.3) we will take a very detailed look at the propagation of neutrinos in the Sun.

Relevant aspects of the solar model will be introduced followed by an examination of the numerical

propagation of neutrinos in the Sun, and the effect of the different parameters that influence the

2
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oscillations. We will then present numerical algorithms that we have derived in order to speed

up these numerical calculations while still preserving accuracy. Section (2.3) will then conclude by

examining the various approximations presented in section (2.2) when applied to solar neutrinos and

recommend the most computationally efficient and precise method for propagating solar neutrinos

in three flavours.

Section (2.4) will take a brief look into the propagation of neutrinos in the Earth. The effect of

the Earth’s density will be examined and it will be shown that the Earth can reintroduce coherence

into an incoherent beam of neutrinos.

Our original work is presented in section (2.5), where we examine solar neutrinos that also traverse

the Earth, and hence the day-night asymmetry. We will derive a formula that allows one to calculate

neutrinos fluxes accurately in three flavours as well as significantly decrease the computational load

in this type of calculation. The main aim of this formula is to model the day-night asymmetry in

SNO and look at the dependence on θ13.

We will conclude this thesis with two brief sections in which we apply our theoretical findings.

Section (3.1) will consider more precisely the dependence of solar neutrino fluxes on θ13 and suggests

two different methods that can be used to measure this mixing angle with solar neutrino experiments.

Section (3.2) will consider the effect of modeling an underground solar neutrino detector compared

to the approximation that the detector is on the Earth’s surface. We will show that the matter above

the detector has a small influence on the neutrino flux that is measured and should be included in

a rigorous calculation.

The bulk of our work consists in an overview of existing numerical methods for the propagation

of solar neutrinos. Throughout the thesis, we present tests of existing methods as well as our own,

new, methods for doing these calculations. In particular, in section (2.3), we introduce new variable

step size algorithms for the propagation through the Sun. The possibility of using a two-flavour jump

probability in the context of the three-flavour adiabatic approximation is also, to our knowledge, a

novel idea. Finally, although the formalism presented in section (2.5) is not new, we are the first to

fully develop the calculation for solar neutrinos traversing the Earth in three flavours.

Section (4) will provide a summary and conclusions of the thesis.
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2 Theory

2.1 Framework

In this section, the formalism that will be used to model neutrino oscillations is presented. Neutrino

oscillations were first proposed in 1957 by Bruno Pontecorvo [3] where he considered the possibility

of neutrino-anti-neutrino mixing, in analogy to the K̄0 − K0 system [4]. At the time, this was only

a speculation, but after the initial results from the Ray Davis experiment in 1968 [7], the possibility

of flavour non-conservation and mixing was developed further([17], [18], [19], [20]) for the case of

neutrinos, in an attempt to describe Davis’ results.

From the Standard Model, we know of three different types of neutrinos that couple through the

Weak Charged Current (W) to the electron, the muon and the tau particle, respectively. From the

decay width of the Zo boson, it is likely that the number of low energy leptonic flavours is restricted

to be three [21]. We hence infer the existence of exactly three types of neutrinos, which we label

να|α=e,µ,τ , as the three flavours of neutrinos coupling to their corresponding charged leptons. We

model a neutrino as a quantum mechanical state that is, in general, a superposition of the three

flavour eigenstates:

|ν >= Ae|νe > +Aµ|νµ > +Aτ |ντ > (1)

that follows the Schrödinger equation:

i
d

dt
|ν(t) >= H |ν(t) > (2)

where H is the Hamiltonian. In the most general case, the eigenstates of the Hamiltonian, |νi >i=1,2,3,

are not the same as the flavour eigenstates, |να >α=e,µ,τ . We thus infer the existence of a linear

transformation, U , that relates the two orthonormal bases to each other, and can be expressed in

terms of a 3 × 3 unitary matrix:

|να >α=e,µ,τ= U |νi >i=1,2,3 (3)

The evolution of the neutrino can then be expressed in either basis:

|ν(t) > = Ae(t)|νe > +Aµ(t)|νµ > +Aτ (t)|ντ >
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2.1 Framework 2 THEORY

= A1(t)|ν1 > +A2(t)|ν2 > +A3(t)|ν3 >

(4)

The complex amplitudes Aα(t) (Ai(t)) are time-dependent functions that represent the different

flavour (energy) eigenstate contents. The probability that a neutrino created as an electron type

neutrino (Ae(t = 0) = 1) and is detected later as an electron-type neutrino is thus given by |Ae(t)|2,

and we will call this the ‘Survival Probability’, which we also abbreviate as Pee. In the next sub-

sections we derive the formula for Pee for neutrinos travelling in vacuum in two and three flavours,

respectively and then we will show the case for neutrinos propagating in matter.

2.1.1 Two-Flavour Vacuum Oscillations

For the present section, we will go through the derivation assuming only two flavours of neutrinos.

This turns out to be a very accurate approximation for considering solar neutrinos, and the SNO

results are indeed analyzed in a two-flavour framework ([22]).

We label the eigenvalues of the Hamiltonian E1 and E2 that correspond to the two energy

eigenstates |ν1 > and |ν2 >, which we will also call the vacuum mass eigenstates. In two dimensions,

the most general unitary transformation between the mass and flavour bases can be parametrized

with a rotation through an angle, θ, which we will call the mixing angle. We also note that the most

general transformation matrix can be real, as any complex phase that is allowed would disappear

when a quantum mechanical probability is calculated. We can thus write the transformation as:

|να >α=e,µ = U |νi >i=1,2

(5)






|νe >

|νµ >






=







cos θ sin θ

− sin θ cos θ













|ν1 >

|ν2 >






(6)

We then write the time-dependent state vector for a neutrino in the form:

|ν(x, t) >= A1(x, t)|ν1 > +A2(x, t)|ν2 > (7)

and impose the mass eigenstates to be one-dimensional plane waves that diagonalize the Hamiltonian:

5
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H =







E1 0

0 E2







Ai(t) = kie
ipite−i

Ei
h̄

t (8)

where ki = Ai(0) are the initial mass eigenstate contents of the neutrino. We have also taken the

ultra-relativistic limit x → t, where the neutrino travels essentially at the speed of light with units

where c = 1 . The neutrino wavefunction is thus completely described by:

|ν(t) >= k1e
ip1te−i

E1
h̄

t|ν1 > +k2e
ip2te−i

E2
h̄

t|ν2 > (9)

One now assumes that both eigenstates were created with the same momentum (p1 = p2 = p) so

that one can then factor out the overall, unmeasurable, phase factor eipte−i
E1
h̄

t, which we will drop

for the rest of the derivation:

|ν(t) >= eipte−i
E1
h̄

t(k1|ν1 > +e−i
E2−E1

h̄
tk2|ν2 >) (10)

At this point we make a slight deviation from the ultra-relativistic limit and allow for a small

neutrino mass. We thus use the relativistic energy-momentum relation to express the energy in

terms of the neutrino mass.

E2 = p2 + m2

E = p

√

1 +
m2

p2
(11)

We then assume that the neutrino mass is much smaller than its momentum, which is consistent

with the limits on neutrino mass set by Tritium decay experiments [23] (of order a few eV) compared

to the energy of solar neutrinos (a few MeV). This allows us to consider only the first term in a

Taylor expansion, and we obtain:

E ≈ p +
m2

2p
(12)

We can now express the difference in energies between the two neutrino mass eigenstates:

6
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E2 − E1 =
m2

2 − m2
1

2p
=

∆m21

2E
(13)

where we have defined the ”mass squared difference” ∆m21 ≡ m2
2 − m2

1 and made the further

approximation that the momentum is equal to the energy (since the masses are so small).

One should note that conservation of energy does not appear to be violated, since the amount

of each mass eigenstate in the neutrino is a constant. That is, if one could measure the probability

of having a |ν1 >, | < ν1|ν(t) > |2, one finds that it is a constant (= |k1|2). Hence if the neutrino

is ”prepared” in a mix of energy (mass) eigenstates, that mix will stay the same in time. One

often hears confusing statements about neutrinos of different mass changing into each other, which

intuitively violates conservation of energy. One should not really interpret the electron and muon

neutrinos as having mass but rather as eigenstates of flavour.

We can now express the neutrino wavefunction in the mass eigenstate basis as:

|ν(t) >= k1|ν1 > +e−i
∆m21
2Eh̄

tk2|ν2 > (14)

For a neutrino that started out as an electron type neutrino we then have:

|ν(0) > = |νe >= cos θ|ν1 > + sin θ|ν2 >

k1 = cos θ

k2 = sin θ (15)

Finally, we use the mixing matrix to express the mass eigenstates in term of the flavour ones and

obtain:

|ν(t) > = cos θ|ν1 > + sin θe−i
∆m21
2Eh̄

t|ν2 >

= cos θ(cos θ|νe > − sin θ|νµ >) + sin θe−i
∆m21
2Eh̄

t(sin θ|νe > + cos θ|νµ >)

= (cos2 θ + sin2 θe−i
∆m21
2Eh̄

t)|νe > + cos θ sin θ(e−i
∆m21
2Eh̄

t − 1)|νµ > (16)

We now have a form where Pee can be easily expressed in terms of the mixing angle and the mass

squared difference:

7
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Pee = |Ae(t)|2

= |(cos2 θ + sin2 θe−i
∆m21
2Eh̄

t)|2

= cos4 θ + sin4 θ + cos2 θ sin2 θ(e−i
∆m21
2Eh̄

t + ei
∆m21
2Eh̄

t)

= cos2 θ(1 − sin2 θ) + sin2 θ(1 − cos2 θ) +
1

2
sin2(2θ) cos

(

∆m21

2Eh̄
t

)

= 1 − 1

2
sin2(2θ)

(

1 − cos

(

∆m21

2Eh̄
t

))

(17)

One can thus see that the electron content of the neutrino oscillates sinusoidally in time, even

though the energy (mass) content stays fixed. This process is called neutrino oscillation. It is now

widely accepted that neutrino oscillations occur in nature thus proving that neutrinos have mass.

One should note that oscillation experiments can only measure mass (squared) differences between

the neutrinos and not the actual scale of the masses. We can also see that we have had to introduce

two new parameters into the Standard Model, namely the mixing angle and mass squared difference.

One often expresses the survival probability as a function of distance by assuming that the

neutrino travels at the speed of light, and hence setting x = ct. One can thus extract a wavelength

for the oscillations λ = 4πEh̄c
∆m21

. In some cases such as the Sun (see, for example, Figure(18)), the

neutrinos are produced over a range of locations and the oscillating term is effectively averaged out.

It is thus worth noting that in these cases, the survival probability is simply a constant, which we

shall call the classical survival probability, given by:

Pee = 1 − 1

2
sin2(2θ) (18)

2.1.2 Three-Flavour Vacuum Oscillations

In this section, the analogous formula for Pee is derived for the case of three flavours of neutrinos

traveling through vacuum. The procedure is the same as in the case of two flavours, however the

algebra is more tedious.

The key difference in three flavours is that the most general unitary matrix (in 3-dimensions)

can be complex. There are several ways of parameterizing this matrix and we will use the same

parametrization as the Cabibbo-Maskawa-Kobayashi (CKM) matrix in the quark sector, which is

defined in terms of three mixing angles and a complex phase. In the lepton sector, the mixing matrix

is usually referred to as the PMNS matrix, in honour of B. Pontecorvo, Z. Maki, M. Nakagawa, and

8
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S. Sakata ([24]), to distinguish it from the CKM matrix, since the mixing angles are different.

Again, we have:

|να >α=e,µ,τ= U |νi >i=1,2,3 (19)

where:

U =













Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3













(20)

= R23 × R13 × R12

(21)

=













1 0 0

0 c23 s23

0 −s23 c23













×













c13 0 s13e
−iδ

0 1 0

−s13e
iδ 0 c13













×













c12 s12 0

−s12 c12 0

0 0 1













(22)

=













c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13













(23)

We have thus introduced three mixing angles θij with the notation cij = cos θij and sij = sin θij

that correspond to the three rotation matrices R12, R23 and R13. The complex phase is denoted δ.

One notes that θ12 is the mixing angle between the first two mass eigenstates, which is the same

angle that appears in the two-flavour oscillation formula. The two-flavour oscillation model will

thus be recovered when θ23 = θ13 = 0. In order to shorten the equations we have introduced the

notation Uij = Uαj |j=1,2,3
α=e,µ,τ and we will thus avoid plugging in the actual angle dependence until the

desired formula is obtained. One also notes that, from unitarity, the inverse transformation is given

by U−1
ij = U∗

ji.

For a neutrino that originates as an electron type neutrino, we have:

|ν(0) > = |νe >= Ue1|ν1 > +Ue2|ν2 > +Ue3|ν3 >

k1 = Ue1

9



2.1 Framework 2 THEORY

k2 = Ue2

k3 = Ue3 (24)

As before, the time dependence in the mass eigenstate basis is trivial, and we again choose to

factor out the phase e−i
E1
h̄

t. Having factored out the phase from the first eigenstate and expressing

the energies in term of the mass squared differences, we can write the Hamiltonian as:

H =
1

2E













0 0 0

0 ∆m21 0

0 0 ∆m31













(25)

And the time dependence of the neutrino is thus:

|ν(t) >= k1|ν1 > +e−i
∆m21
2Eh̄

tk2|ν2 > +e−i
∆m31
2Eh̄

tk3|ν3 > (26)

where we now have two mass squared differences. Hence the three-flavour neutrino oscillations now

involve six parameters (three mixing angles, a complex phase and two mass squared differences)

compared to only two parameters for the two-flavour oscillations.

In order to derive the formula for Pee, we proceed in the same manner as for two flavours, by

re-expressing the mass eigenstates in terms of the flavour ones. To make the formulas shorter, we

also use the Einstein summation convention (summing over repeated indices). In order to use the

convention consistently, we need to index the time dependence; we will use fi(t) = e−i
∆mi1
2Eh̄

t, with

f1(t) = 1. In addition, indices with roman letters will run from 1 to 3 and Greek letters will stand

for e, µ and τ .

|ν(t) > = fi(t)ki|νi >

= fi(t)Uei|νi >

= fi(t)UeiU
∗
iα|να > (27)

We can now obtain the survival probability (by considering the term where α = e):

Pee = |fi(t)UeiU
∗
ie|2

10
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=
∣

∣fi(t)|Uei|2
∣

∣

2

=
∣

∣

∣|Ue1|2 + |Ue2|2e−i
∆m21
2Eh̄

t + |Ue3|2e−i
∆m31
2Eh̄

t
∣

∣

∣

2

=
(

|Ue1|4 + |Ue2|4 + |Ue3|4
)

+ 2|Ue1|2|Ue2|2 cos

(

∆m21

2Eh̄
t

)

+ 2|Ue1|2|Ue3|2 cos

(

∆m31

2Eh̄
t

)

+ 2|Ue2|2|Ue3|2 cos

(

∆m21 + ∆m31

2Eh̄
t

)

(28)

Plugging in the actual angle dependence, one finds:

Pee = 1 − 1

2
c4
13 sin2(2θ12)

(

1 − cos

(

∆2m21

2Eh̄
t

))

− 1

2
sin2(2θ13)

(

1 − cos

(

∆2m31

2Eh̄
t

))

− 1

2
s2
12 sin2(2θ13)

(

cos

(

∆2m31

2Eh̄
t

)

− cos

(

∆2m21 + ∆2m31

2Eh̄
t

))

(29)

We note that this formula does not depend on the mixing angle θ23 or on the complex phase

δ. This means that experiments looking for electron-type neutrinos in a beam of neutrinos that

started in the electron flavour are not sensitive to θ23 or the complex phase. If the two mass squared

differences are not equal to each other, one will obtain two superimposed oscillation patterns, with

wavelengths λ1 = 4πEh̄c
∆m21

and λ2 = 4πEh̄c
∆m31

. If the oscillating terms can be averaged out, then the

three-flavour classical survival probability is given by:

Pee = 1 − 1

2
c4
13 sin2(2θ12) −

1

2
sin2(2θ13) (30)

The general oscillation formula between a flavour α and β is given by:

Pαβ = |fi(t)UαiU
∗
iβ |2 (31)

and typically depends on all of the angles.

2.1.3 Matter Oscillations

So far, we have only considered oscillations in vacuum. These arise from the fact that the eigenbasis

for the Hamiltonian is different from the flavour eigenbasis. In matter, the neutrinos can interact
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through the charged and neutral Weak currents. Intuitively, this changes their (potential) energy,

and hence their Hamiltonian, which will now be diagonal in a new basis, which we will call the

matter mass eigenbasis.

In this section, we present the standard formalism for modeling neutrino propagation through

matter. The idea that matter can influence the propagation of neutrinos was first suggested by

Wolfenstein [25], and then developed by Mikheyev and Smirnov [26], and is called the MSW effect,

in their honour. Because normal matter (such as the sun) is composed of electrons (but not muons

and taus), the electron flavour neutrinos can scatter through the charged current with these electrons.

This is the basic idea that leads to the electron type neutrinos seeing a different potential in normal

matter than the other neutrinos. The neutral current scattering is the same for all flavours of

neutrinos and is thus equivalent to an overall potential term added to the energy, which has the final

effect of adding an unmeasurable phase factor to all neutrino states.

Following the work from ([27], [28]), the interaction part of the Hamiltonian for the charged

current between the electron-type neutrinos and the electrons can be written as a potential energy:

V ≡
√

2GfNe (32)

where Gf is Fermi’s constant and Ne is the number density of electrons. We can then define an

interaction Hamiltonian, Hf
2 , to account for the charged current interaction between electron flavour

neutrinos and electrons. Because the interaction affects only the electron flavour neutrinos, this part

of the Hamiltonian must be expressed in the flavour basis:

Hf
2 =

1

2E













A 0 0

0 0 0

0 0 0













(33)

where we have introduced the variable A = 2
√

2GfNeE for later convenience.

The total Hamiltonian is thus the sum of a vacuum part, Hv
1 , and a flavour part, Hf

2 , both of

which are expressed in different bases. We can hence express the total Hamiltonian in the flavour

basis as:

Hf
tot = UHv

1 U † + Hf
2
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=
1

2E













Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3

























0 0 0

0 ∆m21 0

0 0 ∆m31

























U∗
e1 U∗

µ1 U∗
τ1

U∗
e2 U∗

µ2 U∗
τ2

U∗
e3 U∗

µ3 U∗
τ3













+
1

2E













A 0 0

0 0 0

0 0 0













(34)

where we have used the mixing matrix U to perform a similarity transformation to convert the

vacuum Hamiltonian into the flavour basis.

There now exists a new basis, {|νm
i >}i=1,2,3, the matter eigenstate basis, where the Hamiltonian

is diagonal. In this new basis the time evolution of the eigenstates is just e−i
Ei
h̄

t, where Ei are the

eigenvalues of the total Hamiltonian. It is a simple matter of linear algebra to diagonalize the

Hamiltonian to solve for this basis and find the similarity transformation, T , back to the flavour

basis:

T †Hf
totT |νm

i > = Ei|νm
i >

|νf >f=e,µ,τ = T |νm
i >i=1,2,3 (35)

In the two flavour case, this procedure just results in a new mixing angle, usually referred to as

the matter mixing angle. The total flavour Hamiltonian in two flavours is given by:

Hf
tot =

1

4E







∆m21 − ∆m21 cos(2θ) + 2A ∆m21 sin(2θ)

∆m21 sin(2θ) ∆m21 + ∆m21 cos(2θ)






(36)

The eigenvalues are then:

E1,2 =
1

4E
(∆m21 + A ∓ ∆M21)

∆M21 ≡
√

∆2m21 + A2 − 2A∆m21 cos(2θ)

(37)

where we have chosen the second mass eigenstate to be the heaviest. Note that we have defined the

‘matter mass squared difference’, ∆M21 , as E2 − E1, in analogy to the vacuum case so that the

13



2.1 Framework 2 THEORY

phase between energy eigenstates is equal to ∆M21

2E
(see equation (13)). By solving for the normalized

eigenvectors, one can then express the similarity transformation T in terms of a mixing angle, θm,

which can be expressed as:

tan(2θm) =
∆m21 sin(2θ)

∆m21 cos(2θ) − A

sin(2θm) =
∆m21 sin(2θ)

∆M21
(38)

One notes that the mixing angle depends on the density in the medium and can reach π
4 when

A = ∆m21 cos(2θ). This point is known as the MSW resonance, where the neutrinos undergo strong

flavour conversion, as the amplitude of the oscillations becomes the largest. In three flavours, one

typically solves only for the eigenvalues and eigenvectors that diagonalize the Hamiltonian, without

deriving the analogous matter mixing angles. One also notes that matter oscillations effectively

change the masses of the Hamiltonian eigenstates and thus result in a new mass squared difference,

∆M21, which now drive the oscillations, with a new matter oscillation length, λm = 4πEh̄c
∆M21

. The

MSW resonance then takes place where ∆M21 is a minimum. In two flavours, the formula for Pee in

matter of constant density is simply given by replacing θ and ∆m21 by their matter counterparts:

Pee = 1 − 1

2
sin2(2θm)(1 − cos

(

2πx

λm

)

) (39)

14
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2.2 Numerical Methods and Approximations Through Matter

The numerical methods for propagating neutrinos through matter as well as various common approx-

imations are presented and discussed in this section. We first investigate the effects of propagating

neutrinos through matter of varying density. This is of interest in order to better understand the

accuracy of numerical calculations as well as various approximations. We then introduce the flux

calculations for solar neutrinos at SNO.

In order to model the solar neutrino flux at SNO, one needs to understand how media with

different density profiles influence the behavior of Pee. In a basic numerical calculation, one just

divides the medium into slabs of constant density and successively determines the mass eigenstates

according to equation (35). The numerical calculation thus involves diagonalizing the Hamiltonian

in each slab, which can easily be programmed.

It is also of interest to consider what happens at the boundary between two layers of constant

density to understand better the numerical accuracy of such calculations. In one limit, consistent

with propagation through parts of the sun, the density does not change very much between slabs.

At the other extreme, the boundary between vacuum and the earth has a strong discontinuity in

density. Furthermore, the earth density is also discontinuous at the boundary between different

layers (for example, the mantle-core interface).

2.2.1 Propagation Through Matter

From considering the Hamiltonian in equation (34), one notes that matter effects should become

important when the flavour part of the Hamiltonian is of the same order as the vacuum part, or

when A = 2
√

2Gf NeE ≈ ∆m21

2E
. We shall call this density the critical electron density, N c

e . Below

this density, the neutrino oscillations are mostly driven by the vacuum mixing angle(s), whereas they

are dominated by the matter oscillations when the density is larger. This can be seen in Figure (1),

where the survival probability is plotted as a function of distance. The left panel shows essentially

vacuum oscillations at a density of Ne = 0.01N c
e and the right panel shows matter oscillations when

the density is increased to Ne = 5N c
e . The neutrinos have an energy of 10MeV consistent with solar

neutrinos. For simplicity, Figure (1) is calculated assuming two flavours of neutrinos, so that the

mixing angle can easily be calculated.

The expression given in equation (38) for the mixing angle is singular when A = ∆m21 cos(2θ)

and corresponds to a maximum amplitude of the oscillations (when θm = π
4 ). This is the MSW

resonance which can be seen when sin2(θm) is plotted as a function of A, as in Figure (2).
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(b) Ne = 5Nc

e

Figure 1: Survival probability below (a) and above (b) the critical density as a function of distance
expressed in units of the Earth’s radius for two flavours of neutrinos. The mixing angle is chosen
as sin2(2θ) = 0.833, which is consistent with the mixing angle for solar neutrinos ([22]). The mass
squared difference is also taken from experimental data to be ∆m21 = 7× 10−5eV 2, and the energy
is set to 10MeV . The matter mixing angle in the left panel is given by sin2(2θm) = 0.837, which
is the same as for vacuum oscillations. In the right panel, the matter mixing angle is given by
sin2(2θm) = 0.160 and matter is seen to have a large effect.

One notes that as A → 0, θm → θ (matter oscillations become vacuum oscillations) and that

when A → ∞, θm → π
2 (no oscillations).

In Figure (3), one sees the effects of going through the MSW resonance. The upper left panel

shows A − ∆m21 cos(2θ) as a function of distance (in units of the Earth’s radius), and the density

was chosen to be a linear function of distance. The resonance occurs when A−∆m21 cos(2θ) = 0, at

X ≈ 0.2, that is, when the resonant density, N r
e ≡ 1

2 cos(2θ)N c
e , is reached. The bottom left panel

shows the electron neutrino survival probability and one notes that the center of the oscillations

shifts around the resonance. The upper right panel shows the matter mass eigenvalues (minus

the common term, see equation (37)) and one clearly sees that these are closest in energy at the

resonance. Finally, the bottom right panel of Figure (3) shows the probability of detecting the first

matter mass eigenstate (| < νm
1 |ν(t) > |2) as a function of distance, which appears to be roughly

constant.

We see that, throughout the propagation, the neutrino is mostly in the |νm
1 > state, even though

this state is time dependent. In fact, one easily makes the connection with the adiabatic approxi-

mation (see for example [30]) since the Hamiltonian is time dependent and the neutrino remains in

the same energy eigenstate (of the time-independent Hamiltonian at the beginning of the slab). If

the density profile is such that the propagation is adiabatic, one only needs to calculate the matter

mixing angle at the production and detection points to find the probability for a flavour transition.

16



2.2 Numerical Methods and Approximations Through Matter 2 THEORY

)θcos(221 m∆A-
-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

-310×

)
mθ

(22
si

n

0

0.2

0.4

0.6

0.8

1

Figure 2: This plot is reproduced from [29] and shows how the matter mixing angle exhibits a
resonant behavior as a function of density. The plot shows the amplitude of the matter oscillations
(sin2(2θm)), as a function of A − ∆m21 cos(2θ), so that the resonance occurs at zero. At the
resonance, the probability for flavour change is maximized. The mixing parameters were chosen
with sin2(2θ) = 0.833 and ∆m21 = 7 × 10−5eV 2. One notes that when A = 0, the matter mixing
angle is indeed the same as the vacuum mixing angle. Also, at very high density, the matter
oscillations have an amplitude of zero, and the survival probability does not oscillate any more.
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(b) Mass Eigenstates
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(c) Survival Probability
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(d) Matter Mass Eigenstate Content

Figure 3: Two flavour calculation. Panel (a) shows the density profile used to calculate the other
panels. One notes that the resonance is crossed around X = 0.2. The density increases linearly
from Ne = 0.01N c

e to Ne = 5N c
e , which are the two extreme cases shown in Figure (1). Panel (b)

shows the eigenvalues of the Hamiltonian in (34), and these become closest at the resonance. Panel
(c) shows the survival probability, and one notes that the oscillations have a maximum amplitude
at the resonance. Finally, panel (d) shows the content of the first matter mass eigenstate, and one
notes that it remains roughly constant. The same mixing parameters as in Figure (1) are used.
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At the resonance, the two matter states are closest in energy (see Figure (3 (b)), and it is possible

for the neutrino to jump (tunnel) between states, in a manner exactly analogous to Landau-Zener

level-crossing [31]. This effect depends on the width of the resonance, which in this case is quite

large, and the difference in energy between the eigenstates. The small oscillation in the |νm
1 >

content thus come from the two mass eigenstates jumping back and forth between each other while

the energy difference between them is a minimum.

In three flavours, the situation is qualitatively different, as there are two possible resonances,

corresponding to the two mass squared differences. In Figure (4) the survival probability is plotted

in three flavours as a function of distance (in units of the Earth’s radius) for a density varying

exponentially from Ne = 10−1Nr
e to Ne = 103.5Nr

e , with Nr
e given as the two flavour resonant

density from the above discussion. One notes that the average value of the survival probability shifts

two times, once at each resonance. The small oscillations superimposed on the longer wavelength

ones come from ∆m31. Figure (5) shows the energy eigenvalues as a function of distance, and

one notes that there are indeed two resonances, that occur when two of the energy eigenvalues

become closest. The energy is set to 10MeV and the mixing parameters are sin2(2θ12) = 0.833,

∆m21 = 7 × 10−5eV 2, sin2(2θ13) = 0.1 and ∆m31 = 1 × 10−3eV 2. Again, we note by considering

Figure (6), that the propagation is adiabatic, as the matter mass eigenstate contents do not change

very much over the range of the medium. It seems however that the oscillations in the matter mass

eigenstate contents have a fairly big amplitude compared to the two-flavour case scenario discussed

above. This behavior is again consistent with the eigenstates tunneling into each other when the

difference in energy is minimal between them. The oscillations between |νm
1 > and |νm

2 > also have

a larger amplitude because the energy difference is smaller than between |νm
2 > and |νm

3 > at the

corresponding resonance. In addition, the length over which these ‘tunneling’ oscillations take place

is longer because the resonance between |νm
1 > and |νm

2 > is broader.

2.2.2 Adiabatic Propagation

We now consider the case of adiabatic propagation, mostly following the derivations from [29], and

for simplicity, examining the two flavour-case.

We start with the Schrödinger equation in matter for the neutrino in the flavour basis:

i
d

dt
~νf = Hf~νf (40)

where ~νf is the neutrino state vector in the flavour basis and Hf is the Hamiltonian in the flavour
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Figure 4: Three-flavour calculation. Survival probability as a function of distance in a medium
with density increasing exponentially from Ne = 10−1Nr

e to Ne = 103.5Nr
e , such that the two

resonant densities are encountered. The energy is set to 10MeV and the mixing parameters are
sin2(2θ12) = 0.833, ∆m21 = 7 × 10−5eV 2, sin2(2θ13) = 0.1 and ∆m31 = 1 × 10−3eV 2.
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Figure 5: Three flavour calculation. Matter energy eigenvalues as a function of distance in a medium
with density increasing exponentially from Ne = 10−1Nr

e to Ne = 103.5Nr
e , such that the two

resonant densities are encountered. The energy is set to 10MeV and the mixing parameters are
sin2(2θ12) = 0.833, ∆m21 = 7 × 10−5eV 2, sin2(2θ13) = 0.1 and ∆m31 = 1 × 10−3eV 2.
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Figure 6: Three-flavour calculation. Matter mass eigenstate content as a function of distance in a
medium with density increasing exponentially from Ne = 10−1Nr

e to Ne = 103.5Nr
e , such that two

resonant densities are encountered. The energy is set to 10MeV and the mixing parameters are
sin2(2θ12) = 0.833, ∆m21 = 7 × 10−5eV 2, sin2(2θ13) = 0.1 and ∆m31 = 1 × 10−3eV 2.

basis given by equation (36). If we let T be the transformation from the matter basis ~νm to the

flavour basis (~νf = T~νm) we can then write the propagation equation as:

i
d

dt
~νf = THmT †~νf

i
d

dt
T~νm = THm~νm

iT
d

dt
~νm + i

(

d

dt
T

)

~νm = THm~νm

(41)

where we have used the fact that Hf = THmT † and Hm is the diagonalized Hamiltonian with the

eigenvalues given by equation (37). Finally, using the fact that T †T = 1 one can write this in the

form:

i
d

dt
~νm =

(

Hm − iT †

(

d

dt
T

))

~νm

21



2.2 Numerical Methods and Approximations Through Matter 2 THEORY

=







M1 0

0 M2






~νm

− i







cos(θm) − sin(θm)

sin(θm) cos(θm)













− sin(θm)dθm

dt
cos(θm)dθm

dt

− cos(θm)dθm

dt
− sin(θm)dθm

dt






~νm

=







M1 −idθm

dt

idθm

dt
M2






~νm (42)

As usual, we can factor out an overall phase (=M1), by subtracting a term proportional to the

identity matrix from the Hamiltonian and obtain:

i
d

dt
~νm =







0 −idθm

dt

idθm

dt
∆M21

2E






~νm

=







0 −i∆m21 sin(2θ)
2∆2M21

dA
dt

i∆m21 sin(2θ)
2∆2M21

dA
dt

∆M21

2E






~νm (43)

where we have used equations (37) and (38) in the second line to calculate the derivative. The

propagation is thus adiabatic when the off-diagonal terms are small, hence when the density varies

slowly as a function of time (distance). More precisely, one can compare the scale over which the

mixing angle changes with the wavelength in matter, λm = 4πEh̄c
∆M21

:

dθm

dx
<<

1

λm

(44)

When this condition is satisfied, the propagation is adiabatic and the survival probability can be

found simply by knowing the mixing angles at the start (say θ1) and end of the medium (say θ2). If

one averages over the phase, the classical survival probability is then simply given by:

Pee =

2
∑

i

Pνe→νi
(θ1)Pνi→νe

(θ2)

= cos2(θ1) cos2(θ2) + sin2(θ1) sin2(θ2)

=
1

2
+

1

2
cos(2θ1) cos(2θ2)

(45)

As we have seen previously, the most likely point for the propagation to be the least adiabatic
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is when the matter mass (energy) eigenvalues are closest, as this allows for a tunneling transition

between those eigenstates. It is then convenient to introduce an adiabatic parameter, γ, evaluated

at the resonance, using equation (44) and the fact that λm = 4πEh̄c
∆m21 sin(2θ)

γ ≡ ∆m21 sin2(2θ12)

2h̄cE cos(2θ12)

(

1

Ne

dNe

dx

)−1

(46)

so that the propagation is adiabatic when γ >> 1. This choice follows from others in the literature

([29],[14]) and will be examined in section (2.3).

Figure (7) compares the survival probability from Figure (3) (through a slab with density varying

linearly across the resonance) along with the result calculated using the adiabatic approximation as

well as a numerical phase average (the neutrino content is averaged over the phase at each position).

The curves agree quite well indicating that the propagation is indeed adiabatic, as suspected earlier.

One notes that the adiabatic approximation becomes less accurate after the resonance and misses

some small oscillations in the survival probability. These oscillations (in the phase-averaged curve)

come from the mass eigenstate content oscillating slightly, as will be recalled from Figure (3).
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Figure 7: Comparison of the adiabatic approximation in two flavours with a numerical phase average.
The neutrino traverses a medium of length R⊕ with a density varying linearly from 0.01N c

e to 5N c
e .

The left panel shows the fully numerical survival probability and the right panel is drawn with a
scale that highlights the differences between the adiabatic and the (exact) phase averaged curves.

2.2.3 Deviations from Adiabaticity-Jump Probability

We now examine the case when the propagation deviates slightly from being fully adiabatic, par-

ticularly in the case where the MSW resonance is encountered during the propagation. As stated

before, this case is analogous to Landau-Zener level crossing. In fact, panel (b) of Figure (3) is almost

the same as Figure(2) in [31] where the level crossing problem is considered for colliding molecules.
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The Hamiltonian is also similar to that in [31] and the problem can be solved in a similar fashion.

One would generally approximate the terms varying in space by a linear function which then yields

coupled equations that can be solved exactly. This is the approach first taken by Haxton [32] and

Parke [14] when they considered solar neutrinos and approximated the density as varying linearly

at the resonance. Kuo and Pantaleone have derived the solutions for various other analytical forms

for the density and a summary is provided in [29].

When the propagation is non-adiabatic at the resonance, there exists a probability, Pj , of ‘jump-

ing’ from one mass eigenstate to the other. This can only be found by solving the differential

equations (43) and this is only possible for (some) analytic forms of the electron density. One can

define Pj as the probability | < ν1(θ1)|ν2(θ2) > |2 = | < ν2(θ2)|ν1(θ1) > |2 for the eigenstates on

each side of the resonance to have been converted into each other at the resonance, where θ1(2) is

the mixing angle at the production (detection) point. Equation (45) is then modified such that:

Pee =
2

∑

i,k

Pνe→νi
(θ1)Pνi→νk

(Nr
e )Pνk→νe

(θ2)

= cos2(θ1)(1 − Pj) cos2(θ2) + cos2(θ1)(Pj) sin2(θ2)

+ sin2(θ1)(1 − Pj) sin2(θ2) + sin2(θ1)(1 − Pj) cos2(θ2)

=
1

2
+ (

1

2
− Pj) cos(2θ1) cos(2θ2)

(47)

where Nr
e is the density at the resonance and, by unitarity, (1 − Pj) is the probability of one mass

eigenstate remaining in that state through the resonance. In this ‘corrected adiabatic’ approxima-

tion, one then calculates the mixing angles at the starting and ending points as well as a jump

probability at the resonance point. This can speed up numerical calculations substantially since

one doesn’t need to solve the propagation equation numerically at each point, but only in three

locations in the medium. One should also note that this equation breaks down when the neutrino

phase cannot be averaged out, which happens if the neutrinos are produced in a small region or

close to the resonance. Other relevant limits of this calculation are discussed in [33].

If one applies the result from Landau and Zener [31] to a medium with density varying linearly,

as was first suggested by Haxton [32] and Parke [14], one finds that the jump probability is simply

given by:
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P Parke
j = e−

π
2 γ(xres) (48)

in exact analogy to the result from Landau and Zener, where xres indicates that the the adiabaticity

parameter, γ, (defined above) is to be evaluated at the resonance.

2.2.4 Three-Flavour Case

In three flavours, the adiabatic approximation can still apply as well as the ‘corrected adiabatic’ ap-

proximation. In the case of adiabatic propagation, one solves for the mixing matrix at the production

point (say T (1)) and detection point (say T (2)) so that the classical electron survival probability can

be written as:

Pee =

3
∑

i

Pνe→νi
(T (1))Pνi→νe

(T (2))

= |T (1)
e1 |2|T (2)

e1 |2 + |T (1)
e2 |2|T (2)

e2 |2 + |T (1)
e3 |2|T (2)

e3 |2

(49)

Figure(8) shows a comparison of the adiabatic approximation with the phase-averaged survival

probability from the case in Figure (4), where the density increased exponentially with distance. We

see that, even in the case where two resonances are crossed, the adiabatic approximation provides an

excellent approximation to the full numerical calculation. In addition, from Figure (6), it appeared

that the propagation was less adiabatic than in the example with the linear density, considered

previously, but the adiabatic approximation is still very accurate. In fact, it only misses small

oscillations in the mass eigenstate content, which are visible in the phase-averaged curve as well as

Figure (6).

In the case of a slight deviation from adiabaticity in three flavours, one can rewrite equation (47)

in the form:

Pee =

3
∑

i,k

Pνe→νi
(T (1))P

ν
(1)
i

→ν
(2)

k

(Nr
e (∆mik))Pνk→νe

(T (2)) (50)

where the resonant density is now a function of the mass-squared difference that is relevant for the

transition. This modification arises since there can be more than one resonant density corresponding

to the different mass-squared differences. One must then solve the differential equations for the three
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Figure 8: Comparison of the adiabatic approximation in three flavours with a numerical phase
average for the same situation as in Figure (4). The neutrino traverses a medium of length R⊕ with
a density increasing exponentially from Ne = 10−1Nr

e to Ne = 103.5Nr
e . The mixing parameters are

the same as in Figure (4)

possible mass eigenstate transitions at the resonances. We will however see in section (2.3) that this

is unnecessary in the case of solar neutrinos, and that an excellent approximation can be achieved

by using only the transition between the first two eigenstates.

2.2.5 Three-Flavour Case - Decoupling

To better understand the three-flavour case, we follow work from [12] and [34] and consider situa-

tions that are well approximated by equivalent two-flavour models. We recall the equation (34) for

propagation in matter for three flavours of neutrinos expressed in the flavour basis:

i
d

dt
~νf =

1

2E

(

R23R13R12H
v
1 R†

12R
†
13R

†
23 + Hf

2

)

~νf (51)

where we have expanded the mixing matrix U in terms of the rotation matrices,Rij , that generate it.

One can now introduce a new basis {|νZ
i >}|i=1,2,3 that is given by the transformation ~νf = Z ~νZ ,

where Z is defined as Z = R23R13. In this new basis, the θ23 mixing angle disappears 1, and the

Hamiltonian, HZ , is given by:

1As noted earlier (section (2.1)), the electron survival probability will never depend on θ23 in the chosen
parametrization of U .
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HZ = Z†HfZ = R†
13R

†
23H

fR23R13

=
1

2E













Ac2
13 + ∆m21s

2
12 ∆m21s12c12 Ac13s13e

−iδ

∆m21s12c12 c2
12∆m21 0

Ac13s13e
iδ 0 As2

13 + ∆m31













(52)

where Z is given by:

Z =













c13 0 s13e
−iδ

−s23s13e
iδ c23 s23c13

−c23s13e
iδ −s23 c23c13













(53)

In the case where ∆m12 and A are small compared to ∆m31, the three-flavour oscillations

effectively decouple into one single neutrino and a standard two-neutrino oscillation scheme. To

zeroth order in Ac13s13e
−iδ the Hamiltonian then becomes:

HZ
dec =

1

4E













2Ac2
13 + ∆m21(1 − cos(2θ12)) ∆m21 sin(2θ12) 0

∆m21 sin(2θ12) ∆m21(1 + cos(2θ12)) 0

0 0 ∆m31













(54)

which is exactly the same Hamiltonian (in block form) as given by equation (34) in two flavours, if

the substitution A → Ac2
13 is made. This situation is relevant when the density is such that A never

becomes of order ∆m31. One notes that the block part of the Hamiltonian cannot be neglected

as the eigenvalues would become degenerate. There is thus an inherent error of order Ac13s13 in

the approximation, which is acceptable, since current bounds on θ13 are consistent with zero. The

eigenvalues of this Hamiltonian are then given by:

M3f
1,2 =

1

4E

(

∆m21 + c2
13A ∓ ∆M3f

21

)

M3f
3 =

1

4E
∆m31

∆M3f
21 ≡

√

∆2m21 + A2c4
13 − 2Ac2

13∆m21 cos(2θ12)

(55)
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and the phase differences acquired between the matter mass eigenstates are thus:

φ1 =
∆M3f

21

2E

φ2 =
∆m31

4E

(56)

and the third neutrino does not mix with the first two. As usual, we can define a matrix T that

diagonalizes HZ and relates the matter mass eigenstates ~νm to the basis ~νZ , so that ~νZ = T ~νm:

T =













cos(θm) sin(θm) 0

− sin(θm) cos(θm) 0

0 0 1













tan(2θm) =
∆m21 sin(2θ12)

∆m21 cos(2θ12) − Ac2
13

(57)

Finally, one can go from the matter mass basis to the original flavour basis using the relation

~νf = Mνm, where M is given by M = ZT (and has the same form as U with the replacement

θ12 → θm), so the survival probability is then given by (recall equations (28) and (17)):

Pee =
∣

∣

∣|Me1|2 + |Me2|2e−i
φ1
h̄

t + |Me3|2e−i
φ2
h̄

t
∣

∣

∣

2

=
∣

∣

∣|c2
13 cos2(θm) + c2

13 sin2(θm)e−i
φ1
h̄

t + s2
13e

−i
φ2
h̄

t
∣

∣

∣

2

= s4
13 + c4

13

[

cos4(θm) + sin4(θm) + 2 cos2(θm) sin2(θm) cos

(

φ1t

h̄

)]

+ 2s2
13c

2
13 cos2(θm) cos

(

φ2t

h̄

)

+ 2s2
13c

2
13 sin2(θm) cos

(

(φ2 − φ1)t

h̄

)

≈ s4
13 + c4

13P
2f
ee |A→Ac2

13
+ 2c2

13s
2
13 cos

(

φ2t

h̄

)

≈ s4
13 + c4

13P
2f
ee |A→Ac2

13
(58)

where we have assumed φ2 >> φ1 in the second-last line and then dropped the rapidly oscillating

term (cos
(

φ2t
h̄

)

). P 2f
ee |A→Ac2

13
is the standard two-flavour survival probability in matter with the

replacement of A with Ac2
13. This approximation was first derived in [12] and is often used to correct

the two-flavour formulas for solar neutrinos, as it is believed that θ13 is small but might have a slight
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effect at the order of this correction. The validity of this formula will be examined in more detail in

section (2.3). Equation (58) is relevant when the matter potential, A, can become of order ∆m21,

which is the MSW resonance. In this case, the adiabatic approximation may also be used in three

flavours with a two-flavour jump probability, since the oscillations to the third mass eigenstate are

decoupled. In summary, equation (58) is appropriate when the neutrino propagates through the

∆m21 resonance and ∆m21 << ∆m31 with small θ13. This will be examined in section (2.3) and is

discussed substantially in the literature, ([34],[35]).

Lim, Ogure and Tsujimoto ([34]) have derived the formula to the next leading order for the same

case as above and showed some improvement in accuracy. The essential feature is in modifying θ13

at the production point and adding a small correction, ε. These formulas will be compared in section

(2.3) and are discussed substantially in their paper, so we will just present their version without

deriving it:

Aeff ≡ c2
13A − sin2(2θ13)A

2

4∆m31

tan(2ε(t)) ≡ A(t) sin(2θ13)

∆m31 − s2
12∆m21 − A(t) cos(2θ13)

Pee = s2
13 sin2(θ13 + ε(0)) + c2

13 cos2(θ13 + ε(0))P 2f
ee |A→Aeff

(59)

We note that the expression for ε will be singular when:

sin2(2θ12)∆m21 = A(t) cos(2θ13) − ∆m31 (60)

corresponding to a large correction to θ13, and this formula will break down.

The reduction formulas that have been presented so far are relevant when the neutrino traverses a

matter resonance where the matter potential is of the same order as the first mass-squared difference

or when it sees no resonances. It is natural to consider the case when a resonance with the second

mass squared difference is encountered. In this case, a similar derivation can be done, setting

Z = R23. The Hamiltonian then becomes:

HZ(2) = 1
2E

×
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











s2
12c

2
13∆m21 + s2

13∆m31 + A s12c12c13∆m21 c13s13e
−iδ(∆m31 − s2

12∆m21)

s12c12c13∆m21 c2
12∆m21 −s12c12s13e

−iδ∆m21

c13s13e
iδ(∆m31 − s2

12∆m21) −s12c12s13e
iδ∆m21 s2

13s
2
12∆m21 + c2

13∆m31













(61)

In this case, we still assume ∆m31 >> ∆m21 and drop the terms of leading order in s12c12∆m21

(since these are negligible compared to A and ∆m31) and obtain the Hamiltonian:

H
Z(2)
dec = 1

2E
×













s2
12c

2
13∆m21 + s2

13∆m31 + A 0 c13s13e
−iδ(∆m31 − s2

12∆m21)

0 c2
12∆m21 0

c13s13e
iδ(∆m31 − s2

12∆m21) 0 s2
13s

2
12∆m21 + c2

13∆m31













(62)

which once again decouples into one uncoupled neutrino and a set of two-neutrino oscillations with

eigenvalues:

Mdec
1,3 =

1

2E

(

∆m31 + A + ∆m21s
2
12 ± M3f

31

)

M3f
2 =

1

2E
∆m21c

2
12

∆M3f
31 ≡

√

Σ − 2∆m21s2
12(A + ∆m31) − 4∆m21As2

12c
2
13 + 2∆m31A(1 − 4c2

13) + ∆2m21c2
12(c

2
12 − 2)

Σ ≡ ∆2m31 + ∆2m21 + A2

(63)

The main point is that the equations can be decoupled when the mass-squared differences are

well separated and only one of the resonances is encountered. If both resonances are traversed by the

neutrino, these formulas can still be applied, provided that the neutrino can propagate adiabatically

between them. In this case, one can use each Hamiltonian at the relevant resonance. The subject

of passing through both resonances is well discussed in [34] and [29].
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2.2.6 Boundary Between Layers

We now consider what happens at the boundary between two slabs of (different) constant densities.

The left panel of Figure (9) shows the survival probability through a medium whose density changes

in the middle (at X = 0.5) from Ne = 0.01N c
e to Ne = 5N c

e . The right panel show the corresponding

|νm
1 > content. The length of each slab is 0.325R⊕, where R⊕ is the radius of the Earth. One notes

that the neutrino is mostly in the |νm
1 > eigenstate before the interface (at X = 0.5) and mostly

in the |νm
2 > state after the density change. The propagation between the slabs is thus strongly

non-adiabatic. In the first slab, the oscillations are essentially vacuum oscillations and θm < π
4 so

a pure electron neutrino is mostly in the first mass eigenstate. In the second slab, θm > π
4 and the

neutrino is mostly in the second mass eigenstate, because, at the interface, the neutrino is mostly in

the electron flavour eigenstate (this comes from the specific lengths of the slabs that were chosen).

Although the parameters are the same as in Figure (1), one immediately notes that the oscillations

in the second slab have a different amplitude than in Figure (1b), and that this amplitude is not

simply given by sin2(2θm). This arises from the fact that the oscillation formula in the second slab

is not given by equation (39). The reason for this is simply that in the second slab, the neutrino

does not start as a pure flavour eigenstate. If the neutrino arrives in the second slab with a mix of

flavour eigenstates given by:
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Figure 9: Probabilities as a function of distance, over a range of 0.65R⊕, through two slabs of
constant density, Ne = 0.01N c

e and Ne = 5N c
e . Panel (a) shows the survival probability and panel

(b) the first matter mass eigenstate content. The same parameters as those of Figure (1) were used.
One notes that the amplitude of the oscillations in the survival probability in the second slab is no
longer given by sin2(2θm) = 0.160, since the neutrino is not in a pure electron flavour state at the
beginning of the second slab. The transition between the two slabs is strongly non-adiabatic, as can
be seen in panel (b) where the neutrino is mostly in the |νm

1 > state in the first slab and mostly
|νm

2 > in the second slab.
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|ν(0) >= Ae|νe > +Aµ|νµ > (64)

then equation (15) is modified to:

km
1 = Ae cos θm − Aµ sin θm

km
2 = Ae sin θm + Aµ cos θm (65)

and the probability of detecting an electron type neutrino, Pe, then becomes:

Pe(t) = |Ae(cos2 θm + sin2 θme−i
∆2M21

2Eh̄
t) + Aµ cos θm sin θm(e−i

∆2M21
2Eh̄

t − 1)|2

∝ 1

2
sin2(2θm) cos

(

∆2M21

2Eh̄
t

)

+ 2 cos3 θm sin θm<(AeA
∗
µe−i

∆2M21
2Eh̄

t)

+ 2 cos θm sin3 θm<(A∗
eAµe−i

∆2M21
2Eh̄

t)

(66)

where < denotes the real part of an expression and only the oscillating terms are shown. Clearly, the

amplitude of the oscillations also depends on the initial flavour content. This is the reason the slabs

in Figure (9) were chosen to each have a length of 0.325R⊕, since it resulted in the neutrino entering

the second slab as mostly |νe >. In Figure (10), the slabs are slightly longer (0.425R⊕) so that the

neutrino exits the first slab as mostly |νµ > and one notes that in the right panel, the neutrino stays

mostly in the |νm
1 > state. In this case, we see that the energy eigenstate content changes less and

conclude that the phase of the neutrinos at the boundary is important, since varying the length of

a slab of constant density is equivalent to changing the phase that was acquired through the slab.

When it comes to the numerical accuracy of crossing the boundary, one can easily guarantee a

smooth behavior in the evolution of the flavour content. In order to do this, one writes a computer

program that tracks the flavour content. At the beginning of the slab, the matter mass eigenstate

content can be calculated from the matter mixing angle and the initial flavour content. The neutrino

can then be propagated through the slab, according to equation (14), and the flavour content can

then be updated. Hence, if one imposes the boundary condition that the flavour content is continuous

at the interface between slabs, a smooth survival probability is automatically achieved, even in the

case of a strongly non-adiabatic density change. The only numerical issue is then to make sure that
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(b) First matter mass eigenstate content

Figure 10: Probabilities as a function of distance, over a range of 0.85R⊕, through two slabs of
constant density, Ne = 0.01N c

e and Ne = 5N c
e . Panel (a) shows the survival probability and panel

(b) the first matter mass eigenstate content. The same parameters as those of Figure (9) were used.

the oscillation length does not change very much across the length of the slabs.

2.2.7 The Effect of the Phase on Propagation Across Boundaries

We now briefly consider an interesting effect arising from the neutrino phase when crossing a bound-

ary between two different electron densities. As was noted from Figures (9) and (10), the phase

has an effect on the propagation through a boundary. We examine this further by considering a

neutrino propagated through vacuum, then through the same medium as in Figure (10) and then

vacuum again. That is, the density goes from 0 to 0.01N c
e then 5N c

e and finally back to 0. The

survival probability is plotted for such a situation in Figure (11) where the two vacuum parts are

each one Earth radius in length and the non-zero density part is also one Earth radius in length

with a density change at X = 0. The mixing parameters are set to ∆m21 = 2 × 10−5eV 2 and

tan2(θ) = 0.42 with an energy of 10MeV . The left panel shows the survival probability and the

right panel shows the first matter-mass eigenstate content. The first slab of non-zero density does

not affect the propagation very much, as we have seen earlier that when Ne = 0.01N c
e , the neutrino

is essentially in the vacuum regime.

The calculation was done by starting the neutrino in the electron flavour state and solving for

the mass eigenstate contents k1 and k2:

|ν(0) >= |νe >= k1|ν1 > +k2|ν2 > (67)

The neutrino is then initialized to have mass eigenstate contents k1 and k2, which is the same as
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Figure 11: Probabilities as a function of distance (in units of the Earth radius), through vacuum
then two different slabs of constant density and finally through vacuum again. Panel (a) shows the
survival probability and panel (b) the first mass eigenstate content. The mixing parameters are
∆m21 = 2× 10−5eV 2 and tan2(θ) = 0.42 with an energy of 10MeV . The neutrino starts in vacuum
in the electron flavour according to equation (67). The propagation is physically analogous to that
of a coherent beam of neutrinos.

having a beam of coherent (electron flavour) neutrinos, and then propagating it through the medium.

We now consider the probability of detecting an electron neutrino that started in the state

defined by equation (67), but shifted by half a wavelength, hence, with the replacement k2 → k2e
iπ.

When one looks at the probability of detecting an electron type neutrino, Figure (12a), one is not

surprised to see that the oscillations in the vacuum part before the medium are now out of phase

when compared to Figure (11). One does however note that the oscillations in the medium are not

exactly out of phase. Introducing this phase shift is analogous to the change in length we imposed

on the medium in going from Figure (9) to Figure (10).

The interesting aspect of this calculation arises when one averages over the phase (φ) of the

initial mass content, k2 → k2e
iφ . This is physically equivalent to considering a beam of incoherent

neutrinos. Figure (13) shows the probability of detecting an electron neutrino and the first mass

eigenstate content in such a situation. We see that in the vacuum part before the medium, the

probability of detecting an electron neutrino is now constant (as expected), however, the medium

reintroduces coherence and the neutrino beam becomes coherent after leaving the medium. This

situation happens in Nature when solar neutrinos, which are incoherent (as they originated in differ-

ent parts of the Sun), traverse the Earth and oscillate coherently in vacuum once they have left the

Earth. The explanation lies in the fact that as the beam enters the medium, there is now a common

point in space (time) for all the neutrinos. At this point, one of the mass eigenstates (|ν2 > in the

above example) gets created coherently for all the neutrinos. This surprising result will be examined
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Figure 12: Probabilities as a function of distance (in units of the Earth radius), through vacuum
then two different slabs of constant density and finally through vacuum again. Panel (a) shows the
survival probability and panel (b) the first mass eigenstate content. The mixing parameters are
∆m21 = 2× 10−5eV 2 and tan2(θ) = 0.42 with an energy of 10MeV . The neutrino starts in vacuum
as an electron neutrino that has traveled half of a wavelength in vacuum, that is, in the state defined
by equation (67) with k2 → k2e

iπ. The propagation is physically analogous to that of a coherent
beam of neutrinos, out of phase compared to Figure (11).

when neutrinos traversing the Earth are considered. It is also interesting to note that the part of

the medium with Ne = 0.01N c
e actually does have an effect on the neutrino propagation, and one

can clearly see that this is where the coherent regeneration begins. We first used this density to

show that below the critical density, the matter oscillation regime is almost the same as in vacuum.

We now see that this has to be a qualified statement, and a small density is not the same as a zero

density, as it can reintroduce coherence.

2.2.8 Flux at SNO

We now briefly consider the steps needed in order to calculate the flux of solar electron flavour

neutrinos at the SNO detector. If one considers a distributed source of neutrinos (which is the case

for the 8B neutrinos that SNO sees), one must integrate the flux over the source distribution, φ(~r).

In the case of solar neutrinos, an azimuthally symmetric distribution can be assumed so that the

total flux, Φ, can be written as:

Φ(x) ∝
∫ π

0

∫ R�

0

Pee(dSNO(~r0, L)) φ(r0)r
2
0 sin(θ�) dr0 dθ� (68)

where ~r0 is the point in the Sun where the neutrino was produced and dSNO is the distance from

that position to the SNO detector, which depends on the earth-sun distance L. Since the oscillation

lengths relevant in the Sun are smaller than the solar radius, one must also integrate over the polar
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Figure 13: Probabilities as a function of distance (in units of the Earth radius), through vacuum,
then two different slabs of constant density and finally through vacuum again. Panel (a) shows
the survival probability and panel (b) the first mass eigenstate content. The mixing parameters
are ∆m21 = 2 × 10−5eV 2 and tan2(θ) = 0.42 with an energy of 10MeV . The neutrino starts in
vacuum as an incoherent superposition of neutrinos that originated at different locations (spread
over one wavelength) in the electron flavour. The calculation was done using equation (67) with the
substitution k2 → k2e

−iπ and the result was then averaged over φ.

angle, θ� of the initial position (to model neutrinos from the far side of the sun, see Figure (14).

We are interested in yearly averages at SNO, so we must also integrate the flux over the earth-sun

distance:

Φ(x) ∝
∫ 1AU(1+ε)

1AU(1−ε)

∫ π

0

∫ R�

0

Pee(dSNO(~r0, L)) φ(r0)r
2
0 sin(θ�) dr0 dθ� dL (69)

where 1AU is 1 astronomical unit and ε is the Earth’s orbit’s eccentricity. We have made the

assumption that the distribution of earth-sun distances is constant. This is motivated by the fact

that the neutrino oscillation wavelength in vacuum is smaller than this variation for the best-fit

mixing parameters. This assumption then allows one to change the average over earth-sun distances

into a simple average over one wavelength in vacuum. In effect, the mass eigenstates in the neutrino

beam then become incoherent (phase-averaged). Finally, in doing a yearly averaged flux, one must

also average over the trajectories through the Earth, which can be labeled by the Nadir angle η, (see

Figure (14)), which is just π minus the zenith angle of the sun. It is reasonably straightforward to

calculate the theoretical distribution, ζ(η), of these trajectories over a year for a particular location

by using simple geometry and the parameters describing the Earth’s orbit. One typically refers to

this distribution as the zenith angle exposure function. For example, SNO has its own experimental

zenith angle exposure function, which is essentially just a histogram of the live-time of the detector

at each zenith angle of the sun. The total yearly flux is then obtained through the following 4-
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α

Figure 14: Diagram showing a possible trajectory for a neutrino. All the neutrinos are assumed
to follow parallel trajectories and originate from the upper half of the Sun. The neutrino starting
position is labeled by the polar angle θ� and it’s starting radius ro. In the Earth part, the trajectory
is labeled by the Nadir angle η, which is π minus the zenith angle α. Spherical symmetry is assumed
in the Earth so that the Earth trajectories only depend on the Nadir angle. The general case of an
underground detector is shown. One notes that for a surface detector, one can define a day (night)
trajectory depending on whether the Nadir angle is bigger (smaller) than π

2 .

dimensional integral:

Φ(x) ∝
∫ π

0

ζ(η)

∫ 1AU(1+ε)

1AU(1−ε)

∫ π

0

∫ R�

0

Pee(dSNO(r0, θ�, L, η)) φ(r0)r
2
0 sin(θ�) sin(η) dr0 dθ� dL dη

(70)

In a numerical calculation, this involves calculating Pee(dSNO) many times, since it is different

for each parameter over which the flux is integrated. A basic program will then have four nested

loops in order to calculate an average flux, which we have noted to be a very CPU-intensive task.

One is then motivated to find ways to speed up such calculations, which is the main theoretical focus

of this thesis.
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2.3 Neutrino Propagation in the Sun

In this section we examine the propagation of neutrinos through the Sun. We will start by briefly

introducing the relevant parts of the standard solar model that treat 8B neutrinos whose energy is

in the range that the SNO detector can see. We will then give an overview of numerical propagation

in the Sun, and show the influences of this medium on the survival probability. We will also examine

numerically the dependence on the mixing parameters. Various algorithms for numerical propagation

through the Sun will then be presented. Finally, the approximations presented in section (2.2) will

be examined in the context of propagation through the Sun and we will conclude by recommending

the most computationally efficient and numerically accurate methods for the calculation of solar

neutrino fluxes in three flavours.

2.3.1 The Solar Model

Much work has been done in trying to model the Sun, and we will limit the discussion to aspects

relevant to 8B neutrinos. Most of the leading research on solar physics has been carried out by the

late John Bahcall and his collaborators who have been publishing up-to date solar models roughly

every two years since 1998 ([36], [37]). The work in this thesis has mostly been carried out using

the 2000 Bahcall-Pinsonneault solar model [36], which will be referred to as the BP2000 model.

We will not go into the details of solar physics and simply state that the hydrodynamic stability

of the Sun results from the balance between its self-gravity and the outward pressure of the nuclear

fusion reactions that take place in the interior. The nuclear reactions produce neutrinos, and some

produce intermediate states that β-decay and produce additional neutrinos. For example, the 8B

neutrinos are produced through the following branch of reactions in the p-p chain:

H + H −→ 2H + e+ + νe

2H + H −→ 3He + γ

3He +3He −→ H + H +4He

4He +3He −→ 7Be + γ

7Be + H −→ 8B + γ

8B −→ 8Be∗ + e+ + νe (71)
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Figure (15) shows the energy spectra of all the neutrinos produced in the Sun and is taken from

the 2005 solar model [37]. One notes that 8B neutrinos are responsible for most of the flux that

SNO sees, since the detector is sensitive to energies between approximately 4MeV and 15MeV (for

the Charged-Current reaction). One also notes that the uncertainty on the number of 8B neutrinos

is 16%, which is bigger than the uncertainty on the flux as measured by SNO [8].

Figure 15: Solar neutrino fluxes with uncertainties as a function of energy at 1AU , taken from [37].
Above 2MeV , the flux is dominated by 8B neutrinos.

The 8B neutrino production region is required in order to calculate the flux of electron-flavour

neutrinos using equation (70) and is shown in Figure (16) where the fraction of 8B neutrinos produced

at each radius (φ(r)r2 dr) as a function solar radius is plotted. One notes that the source of these

neutrinos is reasonably well localized.

The final piece of data required from solar physics in order to calculate neutrino fluxes is the

density profile of the Sun. This is shown in Figure (17) where the logarithm (base 10) of the electron

density is plotted as a function of solar radius. One notes that the density decreases exponentially

throughout most of the Sun.
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Figure 16: Fraction of 8B neutrinos produced at each solar radius, from [36]. The distribution of
8B is actually peaked at the center of the Sun, but most neutrinos come from a little further out,
simply due to the volume of the shells at the center being essentially zero. This is why the fraction
of neutrinos produced, φ(r)r2 dr, is plotted instead of the 8B distribution, φ(r).
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Figure 17: Logarithm (base 10) of the electron density (in cm−3) in the Sun as a function of solar
radius, from [36]. The density decreases exponentially from the center, except close to the outer
edge.
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2.3.2 Numerical Survival Probabilities: Overview with Mixing Parameters Consistent

with Experimental Data (Two Flavours)

In the following sections, we examine the dependence of the survival probability through the Sun

on the mixing parameters in a two-flavour scheme. We will assume that neutrinos are produced in

the center and consider how the solar medium affects the neutrino flavour content. We will start

by considering the case where the mixing parameters are consistent with experimental data, then

consider the more general case, for completeness.

In Figure (18), the survival probability through the Sun is plotted in two flavours for a neutrino

that started at the center with an energy of 10MeV and mixing parameters set to ∆m21 = 7 ×

10−5eV 2 and tan2(θ12) = 0.42. Figure (19) shows the same plot for a neutrino with an energy of

5MeV and the same mixing parameters. One notes that the oscillation wavelength is much smaller

than the radius of the Sun as well as the size of the region where 8B neutrinos are produced in either

case. In Figure (20) the matter-mass squared difference is plotted as a function of radius for 5MeV

and 10MeV energy neutrinos, and one notes that the solar density is such that the MSW resonance

occurs (when the mass squared difference is a minimum). One also notes that the resonance is

reached at lower radii for lower energies and that the matter mass-squared difference reaches its

vacuum value about half-way through the Sun. That is, matter effects (at these energies and mixing

parameters) become negligible at a radius, R, bigger than 0.5R�. The resonances are seen more

clearly in Figure (21) where the matter mixing angle is plotted as a function of distance.

Figure (22) shows the second matter mass eigenstate content, which is almost constant, indicating

an adiabatic propagation. The neutrino thus starts off in mostly the |νm
2 > eigenstate and remains

that way throughout the Sun, indicating that the adiabatic approximation is well suited for solar

neutrinos at these energies and mixing parameters.

Finally, Figure (23) shows the survival probability as a function of energy for the mixing param-

eters ∆m21 = 7×10−5eV 2 and tan2(θ12) = 0.42, integrated (numerically) over the Sun according to

equation (68), using the 8B distribution from Figure (16). This is the spectral distortion expected

for 8B neutrinos and will be referred to as the ‘LMA plot’ (Large Mixing Angle). The transition

from vacuum oscillations at low energy to matter oscillations at higher energies is clearly visible.

At low energies, one indeed notes that Pee ≈ 1 − 1
2 sin2(2θ12) = 0.58 (for tan2(θ12) = 0.42) (recall

equation (18)).

41



2.3 Neutrino Propagation in the Sun 2 THEORY

X/R
0 0.2 0.4 0.6 0.8 1

eeP

0.2

0.4

0.6

0.8

1 10 MeV

Figure 18: Survival probability in two flavours through the Sun for a 10MeV neutrino with ∆m21 =
7 × 10−5eV 2 and tan2(θ12) = 0.42. One notes the oscillation length is very small compared to the
region where 8B neutrinos are produced (see Figure(16)).
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Figure 19: Survival probability in two flavours through the Sun for a 5MeV neutrino with ∆m21 =
7×10−5eV 2 and tan2(θ12) = 0.42. The oscillation amplitude is larger than at higher energies, Figure
(18).
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Figure 20: Matter mass-squared difference as a function of distance through the Sun for neutrino
energies of 5MeV and 10MeV with mixing parameters ∆m21 = 7× 10−5eV 2 and tan2(θ12) = 0.42.
The MSW resonance occurs at the local minima.

X/R
0 0.2 0.4 0.6 0.8 1

)
mθ

(22
si

n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 MeV
5 MeV

Figure 21: Matter mixing angle as a function of distance through the Sun for neutrino energies of
5MeV and 10MeV with mixing parameters ∆m21 = 7× 10−5eV 2 and tan2(θ12) = 0.42. The MSW
resonance occurs at the local maxima.
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Figure 22: Second matter-mass eigenstate content as a function of distance through the Sun
for neutrino energies of 5MeV and 10MeV with mixing parameters ∆m21 = 7 × 10−5eV 2 and
tan2(θ12) = 0.42. The propagation is very close to being adiabatic as the mass eigenstate content
does not change very much.
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Figure 23: Solar neutrino LMA energy spectral distortion calculated numerically with two flavours,
averaged over 8B production region (r and θ) and Earth-Sun distance in vacuum. Mixing parameters
are set to their experimental values, tan2(θ12) = 0.42 and ∆m21 = 7 × 10−5eV 2.
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2.3.3 Numerical Survival Probabilities: Dependence on Mixing Parameters (Two

Flavours)

The calculations through the Sun so fa were focused on the mixing parameters consistent with current

experimental limits. The behavior can change dramatically depending on the mixing angle and mass-

squared difference and we will only briefly examine these changes in this section, as the main focus

is to perfect three-flavour calculations within the current range of experimental parameters.

We will note the amazing consequence of the MSW solution, as it allows large flavour changing

oscillations even with a very small mixing angle. Before the measurement of mixing parameters

by experiments such as SNO, it was assumed that the mixing between flavour generations would

be small, in analogy to the already known mixing matrix elements in the quark sector. When

neutrino oscillations were first proposed, it thus seemed unlikely that they would cause the factor of

three depletion in the solar flux that was measured. However, Mikheyev, Smirnov and Wolfenstein

([25], [26]) proposed the matter-enhanced oscillations that could cause large flavour conversion even

with very small mixing angles. This is illustrated in Figure (24) where the survival probability is

plotted as a function of distance through the Sun for 10MeV neutrinos created in the center with

∆m21 = 7 × 10−5eV 2 and sin2(2θ12) = 0.039. If only vacuum oscillations take place, one would

expect a classical survival probability of the order Pee ≈ 1− 1
2 ×0.039 = 0.98, however, it is clear that

after going through the MSW resonance, the electron neutrinos become almost entirely converted

into muon type neutrinos.

Since the oscillation lengths in the Sun are small, it is more convenient to look at the phase

averaged survival probabilities to make comparisons for different values of the mixing angle. That

is, at each point in the propagation, the electron flavour content is calculated by averaging over

the phase between mass eigenstate contents. This is done in Figure (25) where Pee is plotted as a

function of distance through the Sun for 10MeV neutrinos with ∆m21 = 7 × 10−5eV 2 and various

mixing angles. We have chosen to label the curves with tan2(θ12) since sin2(2θ12) is degenerate for

θ12 > π
4 . One notes that the survival probability is close to one for (very) large mixing angles.

We now consider the influence of the vacuum mass-squared difference. One should recall that as

the mass-squared difference becomes smaller, the resonant density also becomes smaller and moves to

a higher radius in the Sun. Inversely, as the mass-squared is increased, a point will be reached where

the resonance does not occur in the Sun (as is the case with ∆m31). This is illustrated in Figure

(26) where the survival probability as a function of distance in the Sun is plotted for different values

of the mass squared difference for 10MeV neutrinos with tan2(θ12) = 0.42. For the resonance to
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Figure 24: Survival probability through the Sun for a very small vacuum mixing angle for a 10MeV
neutrino with ∆m21 = 7 × 10−5eV 2 and sin2(2θ12) = 0.039. The important effect of the MSW
resonance is illustrated.
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Figure 25: Phase-averaged survival probability through the Sun for 10MeV neutrinos with ∆m21 =
7 × 10−5eV 2 and different values of the mixing angle.
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occur at the center of the Sun, a mass-squared difference of ∆m21 ≈ 3.8×10−4eV 2 is required (with

the given mixing angle). One notes from Figure (26) that for the curve with ∆m21 = 7 × 10−4eV 2,

matter has a small effect and the phase-averaged probability is almost equal to that in vacuum.
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Figure 26: Phase-averaged survival probability through the Sun for 10MeV neutrinos with
sin2(2θ12) = 0.833 and different values of the mass-squared difference. The mass-squared differ-
ences are chosen so that the MSW resonance occurs throughout the Sun.

The resonant radius is plotted as a function of θ12 and ∆m21

E
in Figure (27). The current

experimental value is approximately marked by a star for an energy of 10MeV . One should recall

that there is no resonant radius if θ12 > π
4 , since the resonance is given by ∆m21 cos(2θ12) = A

and would then occur at a negative value of A. As ∆m21 becomes large, the solar density is never

large enough to have a resonance. However, since the solar density decreases exponentially, there is

always a point on the edge where the density is small enough to produce a resonance for very low

values of ∆m21.

Finally, Figure (28) shows the phased-average probability for neutrinos that started in the center

of the Sun as a function of θ12 and ∆m21

E
, and the features discussed earlier are visible over the

entire range of mixing parameters. We will adopt this type of contour plot throughout most of the

following sections, as it conveniently shows the dependence on both mixing parameters.

47



2.3 Neutrino Propagation in the Sun 2 THEORY

Figure 27: Contour plot of the location of the MSW resonance (in units of the solar radius) as
a function of log10(sin

2(θ12)) and log10(
∆m21

E
). The point marked with a star is for ∆m21 = 7 ×

10−5eV 2 and tan2(2θ12) = 0.42 at an energy of 10MeV .
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Figure 28: Contour plot of the phase-averaged Pee for neutrinos originating in the center of the Sun
as a function of log10(sin

2(θ12)) and log10(
∆m21

E
). The point marked with a star is for ∆m21 =

7 × 10−5eV 2 and tan2(2θ12) = 0.42 at an energy of 10MeV .
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2.3.4 Numerical Survival Probabilities: Dependence on Mixing Parameters (Three

Flavours)

We proceed in a similar fashion as the previous section to examine the dependence of the survival

probability on the mixing parameters with three flavours of neutrinos. That is, we will focus on

phase-averaged survival probabilities for neutrinos that started in the center of the Sun. We will fix

the two-flavour mixing parameters to their best-fit experimental values (∆m21 = 7 × 10−5eV 2 and

tan2(2θ12) = 0.42) throughout this section, unless stated otherwise.

Figure (29) shows the phased average survival probability as a function of distance through

the Sun for different values of θ13 compared to the two-flavour solution (θ13 = 0) at an energy of

10MeV . The second mass-squared difference is set to ∆m31 = 1× 10−3eV 2, consistent with results

from atmospheric neutrinos ([10]) and long-baseline experiments ([38]). One notes that as the mixing

angle is increased, Pee decreases, since there is now another flavour to oscillate into; as the mixing

angle increases, so does the possibility of mixing with the extra flavour.
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Figure 29: Phase-averaged survival probability as a function of distance through the Sun for different
values of sin2(2θ13) at an energy of 10MeV and ∆m31 = 1 × 10−3eV 2.

We now consider the dependence on the second mass-squared difference. To illustrate this, we

have chosen the usual two-flavour mixing parameters (∆m21 = 7× 10−5eV 2 and tan2(2θ12) = 0.42)

as well as sin2(2θ13) = 0.4, which is unrealistically large but increases the effect of ∆m31. The

results are shown in Figure (30) where one notices that as the mass-squared difference increases past
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1 × 10−2eV 2, it ceases to have a perceptible effect. Also, ∆m31 does not have a large influence on

Pee when it is varied about its experimental value.
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Figure 30: Phase-averaged survival probability as a function of distance through the Sun for different
values of ∆m31 at an energy of 10MeV with sin2(2θ13) = 0.4. The curves for ∆m31 = 1× 10−2eV 2

and ∆m31 = 1 × 10−1eV 2 overlap.

Figure (31) shows the influence of θ13 on the phase-averaged survival probability when it is

varied along with ∆m21 for tan2(θ12) = 0.42. The general effect of increasing θ13 is to decrease

the survival probability, as observed above. We note that this is more pronounced at lower values

of ∆m21. Figure (32a) shows the contours in Pee over the θ12-∆m21 plane when sin2(2θ13) = 0.5.

These contours are to be compared with Figure (28), and we see that the shape does not change very

much, but that, as anticipated earlier, Pee decreases by the same amount over most of the plane.

Figure (32b) shows the difference between Figures (28) and (32a), and we note that adding θ13 does

not change the survival probability very much in the range of the experimental parameters.

2.3.5 Numerical Algorithms for Propagation through the Sun

In this section, we examine numerical methods for propagating neutrinos through the Sun. The

aim is to determine the fastest algorithms based on physical arguments that can be employed in

numerical calculations. The most rudimentary approach for propagating a neutrino through the Sun

is to divide each path that the neutrino takes into N steps and propagate through the Sun using

brute force. One must determine the value of N through trial and error until the results converge
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Figure 31: Contour plot of the phase averaged Pee for neutrinos originating in the center of the Sun
as a function of log10(sin
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to the same value as when N is (almost) infinite. The number of steps to achieve convergence also

depends on the mixing parameters and energy of the neutrino and one would have to set a very big

value for N based on the least convergent situation, when this would be over calculating in other

situations. Such an algorithm would look like:

BRUTE FORCE()

{

RADIUS = 0

STEPSIZE = SUNRADIUS
N

FOR I = 1 TO N

RADIUS = RADIUS + STEPSIZE

SET NEUTRINOPOSITION(RADIUS)

STEP NEUTRINO(STEPSIZE)

END FOR

}

where we have assumed the neutrino started at the center of the Sun. STEP NEUTRINO() is a

function that would calculate and diagonalize the Hamiltonian based on the neutrino position in the

Sun and then evolve the mass eigenstate contents through a length STEPSIZE assuming a constant

density for that length of slab, and finally update the flavour content:

STEP NEUTRINO(STEPSIZE)

{

ELECTRON DENSITY = GET SOLARDENSITY (NEUTRINOPOSITION)

SET HAMILTONIAN(MIXING ANGLES, ELECTRON DENSITY )

SET MASSCONTENT (MIXING MATRIX, FLAV OURCONTENT )

DIAGONALIZE(HAMILTONIAN)

FOR I = 1 TO NFLAV OURS

PHASE[I ] = EIGENV ALUE[I ] ∗ STEPSIZE

MASSCONTENT [I ] = MASSCONTENT [I ] ∗ EXP (PHASE[I ])

END FOR

SET FLAV OURCONTENT (MIXING MATRIX, MASSCONTENT )

}

where we first calculate the mass eigenstate content based on the flavour content from the last
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step (this guarantees a continuous flavour content through strongly non-adiabatic interfaces), then

diagonalize the Hamiltonian to update the mixing matrix and energy eigenvalues.

However, from considering the solar (electron) density as a function of radius (see Figure (17))

as well as the fact that the propagation is mostly adiabatic (see Figure (22)), it is noted that a

variable step size algorithm can be attempted. The aim is to take more steps where the flavour

content changes the most, which is, in essence, a similar concept to using the jump probabilities,

since this will happen at the MSW resonance. In this work, two such algorithms were created, and

it was found that a combination of the two was actually the most efficient.

The first algorithm chooses the step size for the next step so that the density changes by a

constant amount. Because the density decreases exponentially, the step size increases exponentially

as the neutrino is further from the center of the Sun. The idea behind this algorithm is that more

steps should be taken where the density changes most. We shall call this the LOGSTEP algorithm:

LOGSTEP ()

{

RADIUS = 0

STEPSIZE = SUNRADIUS
N

DENSITY CHANGE = 0.01 ∗ GET SOLARDENSITY (0)

DO

RADIUS = RADIUS + STEPSIZE

SET NEUTRINOPOSITION(RADIUS)

STEP NEUTRINO(STEPSIZE)

STEPSIZE = FACTOR ∗ DENSITY CHANGE
ELECTRON DENSITY

WHILE RADIUS < SUNRADIUS

}

where FACTOR is just some numerical factor to convert a fractional change in density to a radial

distance in appropriate units. In the above example, the density is required to change by 1% of the

density at the center and the first step is carried out with the same step size as the BRUTE FORCE()

algorithm. The algorithm also assumes that the electron density was set by STEP NEUTRINO()

and will thus be different at each iteration. This algorithm does not need to be tuned for numerical

accuracy once one has determined a suitable percent change in the electron density.

Figure (33) shows the step size as a function of solar radius as calculated by an algorithm similar

to LOGSTEP. One notes that the step size increases exponentially with radius. At about R = 0.8R�
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the step size appears to become smaller again; this is simply because the algorithm prevents the step

size from overshooting the edge of the Sun. The step size is logically independent of the neutrino

energy and mixing parameters. Figure (34) shows a histogram of the number of steps carried out

at each radius and one notes that only 1 step is taken after the step size starts to become smaller.

This algorithm is thus very efficient at higher radii.
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Figure 33: Step size (in units of R�) as a function of distance through the Sun as calculated by
an algorithm similar to LOGSTEP. The algorithm guards against overshooting the edge of the Sun
and reduces the step size when appropriate.

The second algorithm that was designed calculates the step size based on the oscillation length

in matter. The idea here is that steps should be slightly smaller than the distance over which

the oscillation length in matter changes. As will be recalled from Figure (18), there are many

oscillations in the Sun, but their average value only changes around the resonance. One can thus

step over several oscillation lengths as long as it does not change very much over the step. We shall

call this the EIGENSTEP algorithm, as it bases the step size on a difference in energy eigenvalues

(as calculated by STEP NEUTRINO() ):

EIGENSTEP ()

{

RADIUS = 0

STEPSIZE = SUNRADIUS
N
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Figure 34: Histogram showing the number of steps taken at each radius by the LOGSTEP algorithm.
The last step is taken at 0.8R�.

DO

RADIUS = RADIUS + STEPSIZE

SET NEUTRINOPOSITION(RADIUS)

STEP NEUTRINO(STEPSIZE)

STEPSIZE = FACTOR ∗ 1
PHASE

WHILE RADIUS < SUNRADIUS

}

where FACTOR is again some number to convert the oscillation phase into units of length. As it

stands, this algorithm bases the step size on the oscillation length (proportional to the inverse of

the phase) and steps over a ‘few’ wavelengths (determined by FACTOR). Again, this algorithm only

needs to be tuned for the number of oscillation lengths to be stepped over. It also has the pleasing

feature that the step size now depends on the mixing parameters.

Figure (35) shows the step size as a function of radius calculated using the EIGENSTEP algorithm

for different energies with the mixing parameters set to ∆m21 = 7× 10−5eV 2 and tan2(θ12) = 0.42.

One notes that the step size is smaller for lower energy neutrinos, because their oscillation length

is smaller. The step size increases to a maximum value at the resonance, then becomes constant

once the resonance is traversed, since the propagation is essentially in the vacuum regime. Figure

(36) shows a histogram of the number of steps taken at each radius (for the same energies). One
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notes that this algorithm takes fewer steps at low radius than LOGSTEP, and the reverse is true

at higher radii. The problem with this algorithm is that it does not increase the step size once the

vacuum regime is reached. The particular algorithm shown here set the step size to be ≈ 2.5 times

the oscillation wavelength.
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Figure 35: Step size (in units of R�) as a function of distance through the Sun as calculated by
an algorithm similar to EIGENSTEP for different energies and mixing parameters set to ∆m21 =
7 × 10−5eV 2 and tan2(θ12) = 0.42.

As can be noted from Figures (33) and (35) the step size has different behaviors for the two

algorithms. The goal is to have the longest step size possible throughout the Sun. In the LOG-

STEP approach, the step size near the center of the Sun is very small, because the density changes

significantly in that region, so LOGSTEP takes many steps in that region. The pitfall is that the

oscillation amplitude does not change very much near the center of the Sun, because the density

is so large that the matter mixing angle is small and completely dominates. The LOGSTEP ap-

proach then takes steps that are too small near the center. The EIGENSTEP approach takes steps

that are too small after the resonance, since the steps are based on the oscillation length, which

remains small throughout the Sun. The best approach is then to combine the two algorithms, by

using EIGENSTEP near the center, before the resonant radius and then switch to LOGSTEP after

the resonance, once the oscillations are essentially in the vacuum regime. We shall call this the

VARSTEP algorithm:
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Figure 36: Histogram showing the number of steps taken at each radius by the EIGENSTEP algo-
rithm for different energies and mixing parameters set to ∆m21 = 7×10−5eV 2 and tan2(θ12) = 0.42.

V ARSTEP ()

{

RADIUS = 0

STEPSIZE = SUNRADIUS
N

DENSITY CHANGE = 0.01 ∗ GET SOLARDENSITY (0)

STEPTY PE = 0

DO

RADIUS = RADIUS + STEPSIZE

SET NEUTRINOPOSITION(RADIUS)

LASTPHASE = PHASE

STEP NEUTRINO(STEPSIZE)

CURRENTPHASE = PHASE

PHASECHANGE = CURRENTPHASE − LASTPHASE

IF STEPTY PE = 0

STEPSIZE = FACTOR1 ∗ 1
PHASE

IF PHASECHANGE
CURRENTPHASE

> 0.01

STEPTY PE = 1

END IF
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END IF

IF STEPTY PE = 1

STEPSIZE = FACTOR2 ∗ DENSITY CHANGE
ELECTRON DENSITY

END IF

WHILE RADIUS < SUNRADIUS

}

which starts off by setting the step size to be a ‘few’ wavelengths (using EIGENSTEP) at the

beginning of the iteration. Once the algorithm detects that the phase (the difference between energy

eigenvalues) did not change by more than 1% it switches to using LOGSTEP. This algorithm turns

out to be very stable (numerically) and was used for all the solar numerical calculations presented

in this thesis. The pleasing aspect of this algorithm is that it will change the step size to be suited

for different mixing parameters and energies and really only needs to be tuned once.

Figure (37) shows the step size as a function of radius calculated using the VARSTEP algorithm

for different energies with the mixing parameters set to ∆m21 = 7× 10−5eV 2 and tan2(θ12) = 0.42.

The step size is small near the resonance and then switches to increasing exponentially with radius.

The algorithm that was used switches from EIGENSTP to LOGSTEP when the matter mass squared

difference changed by less than 1% from the previous step. It also forces the use of EIGENSTEP

until the neutrino is at least 0.15R� out from the resonance, which can be seen in the sharp increase

in stepsize around 0.4R�. Figure (38) shows a histogram of the number of steps taken at each

radius (for the same energies). One notes that this algorithm always takes fewer steps than either

LOGSTEP or EIGENSTEP. It correctly takes more steps before and around the resonance and

then changes to exponential steps when the vacuum oscillation regime is reached.

We thus conclude that a variable step algorithm is appropriate for propagating solar neutrinos

numerically and recommend it be used. Through trial and error, it was determined that about 3000

steps need to be taken in the Sun for a brute force algorithm to converge consistently, but have

shown here that a factor of ≈ 10 in speed can be gained by using variable step size routines.

2.3.6 Two-Flavour Approximations

We now consider various approximations in order to determine the best technique for calculating

solar neutrino fluxes with three flavour of neutrinos. The goal is to define the fastest three-flavour

algorithm that is still accurate.

We will follow the order of approximations presented in Section (2.2), and start by examining

the adiabatic approximation in two flavours. We have already noted from Figure (22) that the

58



2.3 Neutrino Propagation in the Sun 2 THEORY

X/R
0 0.2 0.4 0.6 0.8 1

St
ep

Si
ze

/R

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

15MeV (344 steps)

10MeV (391 steps)

5MeV (542 steps)

VARSTEP

Figure 37: Step size (in units of R�) as a function of distance through the Sun as calculated by
an algorithm similar to VARSTEP for different energies and mixing parameters set to ∆m21 =
7 × 10−5eV 2 and tan2(θ12) = 0.42. The steps size changes around 0.4R� from EIGENSTEP to
LOGSTEP.

X/R
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Nu
m

be
r o

f s
te

ps
 ta

ke
n

0

2

4

6

8

10

12

14

16

18 5MeV
10MeV
15MeV

VARSTEP

Figure 38: Histogram showing the number of steps taken at each radius by the VARSTEP algorithm
for different energies and mixing parameters set to ∆m21 = 7×10−5eV 2 and tan2(θ12) = 0.42. More
steps are taken near the center of the Sun, then very few are taken after the resonance.
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propagation in the Sun is very close to being adiabatic. This can be examined further by looking

at the adiabatic parameter, γ, defined in section (2.2) for different mixing angles and mass squared

differences. We recall the definition:

γ(x) ≡ ∆m21 sin2(2θ12)

2h̄cE cos(2θ12)

(

1

Ne

dNe

dx

)−1

(72)

Figure (39) shows how γ varies as a function of ∆m21

E
and sin2(θ12). The adiabatic parameter is

evaluated at the resonance, since this is where the energy eigenvalues are closest to each other and

the probability of tunneling is thus the largest. The contours where the adiabadicity parameter is

of order unity is where the adiabatic approximation is expected to break down. One should note

that the scale is set in order to highlight the region where γ ∼ 1, and is thus misleading, since

the adiabatic parameter actually becomes many orders of magnitudes larger than implied by the

scale. One notes that the propagation is expected to be adiabatic over a fairly large range of mixing

parameters, in particular in the region of the experimental parameters (indicated by the star for a

10MeV neutrino).
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Figure 39: Adiabadicity parameter (as defined by equation (72)) plotted as a function of
log10(sin

2(θ12)) and log10(
∆m21

E
). The scale is fixed so that the line where γ ∼ 1 is clearly visi-

ble, and in some regions, the adiabadicity parameter is several orders of magnitudes bigger than
indicated on the scale.

Figure (40a) shows the adiabatic survival probability over the same range of mixing parameters,

and Figure (40b) shows the relative difference with the survival probability calculated with a nu-
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merical phase average (Figure (28)). One notes that in the region where the current experimental

parameters lie, the adiabatic approximation works very well. This was anticipated from Figure (39),

and confirms that the adiabatic approximation breaks down when γ ∼ 1.
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Figure 40: Contour plots of Pee calculated with the adiabatic approximation (left) and relative
difference from Pee calculated with a phase average (right) for neutrinos originating in the center
of the Sun as a function of log10(sin

2(θ12)) and log10(
∆m21

E
). The point marked with a star is for

∆m21 = 7 × 10−5eV 2 and tan2(2θ12) = 0.42 at an energy of 10MeV .

We now consider the effect of modifying the adiabatic approximation by introducing the jump

probability at the resonance. Several authors have derived analytical formulas for this result, de-

pending on analytical descriptions of the density at the resonance. The most basic approach, first

used by Landau and Zener, while considering atomic collisions, is to approximate the density as

varying linearly with distance. This is a reasonable approach, as long as the resonance is narrow,

which is often the case in Sun. Their result was first applied to neutrinos by Haxton [32] and Parke

[14] for a linearly varying density who found the jump probability, P Parke
j to be:

P Parke
j = e

−π
2

∆m21 sin2(2θ12)

2h̄cE cos(2θ12) | 1
Ne

dNe
dx

|x=xres |−1

= e−
π
2 γ(xres) (73)

where the derivative of the density is evaluated at the resonance. Kuo and Pantaleone present more

general formulas for various density profiles [29] in the form:

P KP
j = e−

π
2 γ(xres)F (74)
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where F depends on the specific density profile. For example, in the case of an exponentially

decreasing density, Ne ∝ e−r, F = 1 − tan2(θ12). This particular case, which is most relevant for

the Sun, was first solved by Petcov [13]. The survival probability is shown as a function of θ12 and

∆m21

E
in Figure (41), calculated using the two jump probabilities. We note that these agree quite

well (with each other and with Figure (28)) and are valid over a much larger range than the adiabatic

approximation, as expected. We did not plot the relative difference from the phase-averaged result as

the agreement is to within fractions of a percent. There is a very small region of large disagreement

(up to 80%) along the line where γ ∼ 1, but we chose not to plot this, since the region is so small.
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Figure 41: Contour plot of Pee calculated with the two jump probabilities (in two flavours), for
neutrinos originating in the center of the Sun as a function of log10(sin

2(θ12)) and log10(
∆m21

E
). The

point marked with a star is for ∆m21 = 7×10−5eV 2 and tan2(2θ12) = 0.42 at an energy of 10MeV .

Figure (42) shows the percent difference between the survival probabilities calculated with the

exponential and linear approximations to the density. We see that the region where these two disagree

in the Sun is very small, far from the experimental parameter space and that the disagreement is

mostly smaller than one percent.

At this point, we can finally understand all of the features in the Figures similar to Figure (41).

The main triangular feature, often referred to as the MSW triangle, is the region of parameter

space where matter has an important effect on the survival probability. The horizontal line at

the top of the triangle delimits the region above which the MSW resonance cannot occur in the

Sun (as illustrated by Figure (27)). The diagonal line on the bottom delimits the region below

which the jump probability is non-negligible and, finally, the vertical line on the right of the triangle

corresponds to a vacuum mixing angle of π
4 . For mixing angles above this value, the MSW resonance

cannot occur, as it would require a negative density or the neutrinos to be anti-neutrinos.
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Figure 42: Percent difference between solar survival probability calculated with Petcov and Parke
jump probabilities as a function of log10(sin

2(θ12)) and log10(
∆m21

E
).

2.3.7 Three-Flavour Approximations

We now consider the three flavour approximations presented earlier along with the adiabatic ap-

proximation in three flavours. We have noted that varying ∆m31 around its experimental value does

not have a large effect and we will hence only consider the influence of θ13. Figure (43a) shows the

survival probability calculated with the adiabatic approximation as a function of ∆m21

E
and θ13 for

tan2(θ12) = 0.42, and we note that it agrees quite well with Figure (31). Figure (43b) shows the

relative difference in percent between the two methods, and we note that for this value of θ12 the

agreement is excellent over a large range of the plane.

Next, we consider using the adiabatic approximation in three flavours together with the jump

probability in two flavours. This will work if the only important jump probability is between the

first two eigenstates, as it will completely ignore the 2-3 transition. This is expected to be a valid

assumption since only the 1-2 resonance is crossed in the Sun. We consider this approximation in

the case where sin2(2θ13) = 0.5 so that the results can be compared to Figure (32). The results are

shown in Figure (44), where the left panel is the survival probability calculated with the three-flavour

adiabatic approximation with a two-flavour (Parke) jump probability and the left panel shows the

relative difference (in percent) with the results from Figure (32). The agreement, once again, is seen

to be excellent over most of the plane and we conclude that this is a very good approximation.
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Figure 43: Contour plot of Pee in the adiabatic approximation (left) and relative difference with the
result calculated with a phase average (right) for neutrinos originating in the center of the Sun as a
function of log10(sin

2(θ13)) and log10(
∆m21

E
) for tan2(θ12) = 0.42.
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Figure 44: Contour plot of Pee in the three-flavour adiabatic approximation using the two-flavour
Parke jump probability (left) and relative difference with the result calculated with a phase average
(right), as a function of log10(sin

2(θ12)) and log10(
∆m21

E
) for tan2(θ12) = 0.42 and sin2(2θ13) = 0.5.
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Finally, we consider the approximations that correct the two-flavour calculation to include the

effect of θ13 in the case when the three-flavour oscillations can be decoupled. We will refer to these at

the first and second order approximations (see section (2.2)). We will use the Parke jump probability

to calculate the two-flavour survival probability and compare the results with Figure (32), for the

case where sin2(2θ13) = 0.5. The survival probability calculated with the first-order approximation

is shown in Figure (45) along with the relative difference (in percent) from the numerical phase

average. One notes that the results are almost the same as the three-flavour adiabatic with the

two-flavour jump probability. This is to be expected and shows that the third neutrino is indeed

decoupled. Figure (46) shows the same results when calculated with the second-order approximation.

We note that both approximations agree very well in the region of experimental parameter space, and

that the first-order approximation maps out the MSW triangle more accurately. The second-order

approximation is seen to break down for a line where the expression for ε is singular (recall equation

(60)). This only happens because we have chosen a particular neutrino energy when calculating

the plot, and this singular line can easily be ‘pushed out’ of the graph by doing the calculation

with a lower energy neutrino. It does however seem that the three-flavour adiabatic approximation

using the two-flavour jump probability is a slightly more accurate approximation, which is the main

conclusion of this section.
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Figure 45: Contour plot of Pee using the first-order correction for non zero θ13 and the two-flavour
Parke jump probability (left) and relative difference with the result calculated with a phase average
(right), as a function of log10(sin

2(θ12)) and log10(
∆m21

E
) for tan2(θ12) = 0.42 and sin2(2θ13) = 0.5.
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Figure 46: Contour plot of Pee using the second-order correction for non zero θ13 and the two-flavour
Parke jump probability (left) and relative difference with the result calculated with a phase average
(right), as a function of log10(sin

2(θ12)) and log10(
∆m21

E
) for tan2(θ12) = 0.42 and sin2(2θ13) = 0.5.
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2.4 Neutrino Propagation in the Earth

In this section, we briefly examine the effect of the Earth on the propagation of neutrinos. We

will see that the Earth has a small effect on the survival probability of neutrinos in the range of

the experimental parameters and that the largest effect occur at energies higher than those of solar

neutrinos.

The Earth is quite different than the Sun in the density profile that it presents to neutrinos.

Figure (47) shows the electron density of the Earth as a function of radius and one notes that it

contains several discontinuities. The Preliminary Earth Reference Model (PREM), [39] , from 1981

was used and seems to be the most widely accepted. The density profile is inferred from seismological

considerations, and although it is named “Preliminary”, most of the community still uses it to this

day, and some authors just refer to it as the REM. Apart from the density discontinuities, we have

also used a standard chemical composition to calculate the electron density as a function of mass

density. This is a simple two layer chemical model where the ratio of protons to nucleons changes

from Z/A = 0.467 to Z/A = 0.497 at an Earth radius of 3480km, where the core-mantle interface

is located. This is also consistent with approximations made by the rest of the neutrino physics

community [40].
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Figure 47: Electron density profile for the Earth based on the PREM model and a two layer chemical
distribution where the ratio of protons to nucleons changes from Z/A = 0.468 to Z/A = 0.497 at an
Earth radius of 3480km, marked by the vertical line.

It was already argued in section (2.2) that the discontinuities do not present any inherent prob-
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lems in numerical calculations as long as the flavour content is taken as continuous through any

interface. In Figure (48), the survival probability is plotted for a neutrino that starts one Earth

radius away from the Earth, then travels through the center and again one radius in vacuum after

that. The energy is set to 10MeV , with ∆m21 = 2×10−5eV 2 and tan2(θ12) = 0.42. A smaller mass

squared difference was chosen in order to make the wavelength bigger and the oscillations easier to

see. One clearly notes the effect from the Earth’s matter in the transition from vacuum oscillations

to matter oscillations. The mantle-core interface is also visible and is the only point where the

electron density changes enough to alter the matter oscillation amplitude significantly.
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Figure 48: Survival probability (two flavours) for a neutrino that started one Earth radius away
from the Earth, then traverses the Earth, and finally travels one more Earth radius in vacuum. The
energy is set to 10MeV , with ∆m21 = 2 × 10−5eV 2 and tan2(θ12) = 0.42.

2.4.1 Incoherent Beam of Neutrinos arriving at Earth

When examining solar neutrinos, one must consider the effect from the Earth on an incoherent beam

of neutrinos. The incoherence is due to neutrinos being generated in different locations in the Sun

but can also arise from the fact that a detector will have a finite energy resolution and that the

Earth-Sun distance varies. This section briefly introduces some of the surprising features that arise

when an incoherent beam of neutrinos traverses the Earth. This discussion was already introduced

in section (2.2).

Neutrinos from the Sun were shown to exit in mostly the |ν2 > eigenstate. We thus examine the
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behavior of a neutrino that starts in vacuum in the following state:

|ν >=
√

0.1|ν1 > +
√

0.90|ν2 > e−iφ (75)

where we have chosen a mass content consistent with solar neutrinos and introduced a phase φ over

which the results will be averaged. We have chosen a two flavour model as the addition of the third

flavour does not introduce any qualitatively different behaviors. Figure (49) shows the probability

of detecting an electron type neutrino as a function of distance for a neutrino that started out in

the state given by equation (75) as well as the corresponding |νm
1 > content. The neutrino is again

started one Earth radius away in vacuum, it then goes through the center of the Earth and finally

travels one more Earth radius in vacuum. The left panels of Figure (49) are done for a value of

φ = 0 and the right panels show the same plots for φ = π. As expected, the vacuum oscillations in

the two figures are out of phase. However one notes that the matter oscillations are not out of phase

and that, in the case where φ = π, the |νm
1 > content is regenerated. One also notes that the |νm

1 >

oscillates and is not constant. This is because the density reaches the resonant density so that there

is a non-negligible jump probability allowing the |νm
1 > eigenstate to tunnel back and forth to the

|νm
2 > state. This can be seen more clearly in Figure (50) where the matter mixing angle and matter

mass squared difference are plotted as a function of distance. One notes that the resonant density is

reached in the core, which does not actually happen with a mass squared difference consistent with

experimental limits. This will be examined further in the next section.

Finally, we can look at the probabilities averaged over the phase φ, shown in Figure (51), where

we see that, as anticipated earlier, the Earth can reintroduce coherence into a beam of neutrinos.

Again, this is because there is now a particular point in space (time) where the |νm
1 > eigenstate is

regenerated (coherently).

2.4.2 Survival Probability in the Earth : Dependence on Mixing Parameters

It is of interest to know the behavior of the survival probability through the Earth, for a neutrino

that started at the edge of the Earth in the electron flavour. This is shown in Figure (52) where the

survival probability is plotted along with its phase average, the |νm
1 > content, the matter mixing

angle and the matter mass squared difference for a 10MeV neutrino with ∆m21 = 7 × 10−5eV 2

and tan2(θ12) = 0.42. We see that, in this case, the resonant density is never encountered and that

the Earth has a very small effect on the average flavour content, which remains close to its vacuum

average.
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Figure 49: Survival probability and matter mass eigenstate content for a neutrino that started one
Earth radius away from the Earth, then traverses the Earth, and finally travels one more Earth
radius in vacuum. The energy is set to 10MeV , with ∆m21 = 2 × 10−5eV 2 and tan2(θ12) = 0.42
and the neutrino started in the state defined by equation (75) with the phase set to 0 (left) and π
(right).
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Figure 50: sin2(2θm) and ∆M21 as a function of distance for the case illustrated in Figure (49).
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Figure 51: Survival probability and matter mass eigenstate content for a neutrino that started one
Earth radius away from the Earth, then traverses the Earth, and finally travels one more Earth
radius in vacuum. The energy is set to 10MeV , with ∆m21 = 2 × 10−5eV 2 and tan2(θ12) = 0.42
and the neutrino started in the state defined by equation (75) but the probabilities are averaged
over the phase. One notes that the Earth reintroduces coherence in the neutrino beam.
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Figure 52: Survival probability, matter-mass eigenstate content, mixing angle and matter mass
squared difference as a function of distance through the Earth for a 10MeV neutrino, with ∆m21 =
7 × 10−5eV 2 and tan2(θ12) = 0.42. The Earth has a small influence on the flavour content.
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Figure (53) shows the relative difference (in percent) between the phase averaged survival prob-

ability through the Earth (diametrical trajectories) and the classical survival probability in vacuum

over a range of mixing parameters. This illustrates the range of parameter space where the Earth

has a substantial influence beyond vacuum oscillations. One notes some regions at high energy

where the difference is quite significant due to the resonance density being reached in the Earth.

The effect is also more pronounced at small mixing angle where the oscillation length can become

comparable to the lengths of the mantle and core. This has been termed the ‘resonant wavelength’

and is discussed in [40] and [41].

Figure 53: Relative difference (in percent) between vacuum classical survival probability and phase
averaged survival probability for a trajectory through the Earth’s core as a function of log10(

∆m21

E
)

and log10(sin
2(θ12)). The star corresponds to the experimental parameters at an energy of 10MeV .

The Earth has the biggest effect at small mixing angles and large energies.
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2.5 Solar Neutrinos Propagating Through the Earth

In this section we seek to derive a formalism for calculating fluxes of solar neutrinos when these also

traverse the Earth. This is relevant in modeling the night flux at SNO and taking into account the

effect of the Earth’s matter on the survival probability. It will turn out that, in most cases, one need

not do the lengthy integral presented at the end of Section (2.2) and that a very good approximation

can be used. Instead, we will show how it is possible to calculate the average over the Earth

trajectories separately from the average over the Sun. This will remove one of the nested integrals,

which turns out to save considerable amounts of computing time. The theoretical motivation for

this section is to consider the possible effects that θ13 can have on solar neutrino experiments and if

a day-night asymmetry measurement can provide independent bounds on θ13.

2.5.1 Introduction to PSE

The key to separating the Earth and solar integrals is the approximation that neutrinos from the

Sun reach the Earth in an incoherent beam. Incoherence is achieved in several ways. Primarily, it

comes from the neutrinos being produced in different locations in the Sun. As long as the neutrino

wavelength in matter is small compared to the production region, incoherence will be assured.

Furthermore, when one considers solar neutrino experiments such as SNO, even if the neutrinos are

in a coherent beam, the detector will introduce an incoherence due to the energy resolution. That

is, if an experiment is trying to measure neutrino oscillations by looking at the flux at different

distances from a source, it will not be able to measure the oscillation length accurately if it has

a poor energy resolution, since it depends on L/E (where L is the distance between the source

and the detector). Hence, a detector with poor energy resolution will not necessarily be able to

distinguish a coherent beam from an incoherent one. Another reason that a SNO type detector

would introduce incoherence is from the fact that it does not see very many neutrino events per day

(around 10 or so). Hence, to provide a statistically significant measure, many days of livetime need

to be used. However, since the Earth-Sun distance will change over this livetime, a new incoherence

is introduced.

One should thus be convinced that solar neutrinos reach the Earth incoherently. This condition

is only violated if the neutrino energies are very large and result in an oscillation length that is

comparable to the Earth-Sun distance. The particular requirements for solar neutrinos to reach the

Earth in an incoherent beam are discussed in [42]

The goal of this section is thus to derive a formula for calculating the survival probability, PSE ,
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for solar neutrinos having traversed the Earth in the case when the solar neutrinos reach the Earth

incoherently. The aim of this formula is to allow one to separate the Earth out from the integral in

equation (70) and examine the dependence on θ13.

2.5.2 Derivation of PSE

We will closely follow a derivation done by Baltz and Weneser in ([43], [44]), but extend their work

to three flavours. A similar three-flavour derivation has already been done by Kim and Lee [16],

although they did not consider the final result as a function of the mixing angles and sought a

numerical method for the calculation. Similar work on the subject has also been carried out by

Ohlsson et. al. in [15], who reach similar conclusions as us, although their approach is different.

We start by considering the wave-function for a single neutrino that exited the Sun, has traveled

through vacuum and now reaches the Earth in the state:

|νS >= fi(t)ki|νi > (76)

where fi(t) are the phases of the vacuum mass eigenstates |νi > acquired during the trajectory, and

ki are the vacuum eigenstate contents, which can be taken as real numbers. The index S on the

neutrino wave-function indicates that this is the wave-function after the Sun, but before the Earth.

Throughout this section, we will adopt the convention that repeated indices are to be summed over,

roman letters run from 1 to 3 and Greek letters run over the neutrino flavours (e, µ, τ). One can

re-express the neutrino wave-function in the flavour basis:

|νS > = βα|να >

= U∗
αifi(t)ki|νi >

(77)

where U is the PMNS mixing matrix from the vacuum to the flavour basis. Hence, the flavour

contents, βα, are given by:

βα = U∗
αifi(t)ki (78)

In general, for an incoherent beam of neutrinos we then have:

|βα|2 = U∗
αif

∗
i (t)k∗

i Uαjfj(t)kj
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= |Uαi|2|ki|2

(79)

and

βαβ∗
γ = U∗

αifi(t)kiUγjfj(t)
∗k∗

j

= U∗
αiUγi|ki|2

(80)

where we have imposed fi(t)
∗fj(t) = δij and δij is the Kronecker delta. This condition is valid if

one can average over the neutrino phases as we have assumed an incoherent beam. One can thus

identify some of these quantities with probabilities averaged over the Sun:

|βe|2 = P̄�
νe→νe

|βµ|2 = P̄�
νe→νµ

|βτ |2 = P̄�
νe→ντ

= 1 − P̄�
νe→νe

− P̄�
νe→νµ

(81)

where, for example P̄�
νe→νe

is just the survival probability for neutrinos averaged over the Sun as

well as the Earth-Sun distance, as given by equation (69).

We now introduce ‘Earth Transmission’ functions, Ψe(µ,τ), to represent the wave-functions for

a neutrino which has traversed the Earth having started out as an electron (muon, tauon) flavour

neutrino. Expressed in the flavour basis, these can be written as:

|Ψα >= Cα
e |νe > +Cα

µ |νµ > +Cα
τ |ντ > (82)

and one can make the following identifications:

P⊕
νe→νe

= |Ce
e |2

P⊕
νµ→νe

= |Cµ
e |2

P⊕
ντ→νe

= |Cτ
e |2 = 1 − P⊕

νe→νe
− P⊕

νµ→νe

(83)
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We can now express the wave-function for a neutrino that arrived at the Earth in the state

defined by equation (77) and has traversed the Earth. The result is simply a linear combination of

the Earth Transmission functions:

|νSE >= βα|Ψα > (84)

where we have now indexed the wave-function with SE, to indicate that the solar neutrino has now

traversed the Earth. The probability of detecting an electron neutrino, PSE , can now be expressed

by separating out the Earth and Sun terms:

PSE = | < νe|νSE > |2

= |βeC
e
e + βµCµ

e + βτCτ
e |2

= |βα|2|Cα
e |2 +

1

2

(

(βeβ
∗
µ + c.c.)(Ce

e Cµ∗
e + c.c.)

+ (βeβ
∗
τ + c.c.)(Ce

e Cτ∗
e + c.c.) + (βµβ∗

τ + c.c.)(Cµ
e Cτ∗

e + c.c.)

+ (βeβ
∗
µ − c.c.)(Ce

e Cµ∗
e − c.c.) + (βeβ

∗
τ − c.c.)(Ce

eCτ∗
e − c.c.)

+ (βµβ∗
τ − c.c.)(Cµ

e Cτ∗
e − c.c.)

)

(85)

At this point, one can easily calculate the different quantities over the Sun and Earth separately.

Since the terms separate, one can average (numerically) the quantities |βα|2 and βαβ∗
γ (|Cα

e |2 and

Cα
e Cγ∗

e ) over the Sun (Earth) trajectories. This is essentially the point where the Kim and Lee

derivation leads. We are however interested in examining how this formula depends on the various

mixing angles and how it can be further simplified. We first note by considering equations (79) and

(80) that one can re-express βαβ∗
γ in terms of solar probabilities, by using equation (79) to solve for

the |ki|2. If we introduce the matrix Uij = |Uij |2 we have:

|βλ|2 = Uλi|ki|2

|ki|2 = U−1
iλ |βλ|2

βαβ∗
γ = UαiU

∗
γi(U−1

iλ |βλ|2)

(86)

where we have assumed that U is an invertible matrix. One should thus keep in mind that this

derivation cannot be done in the case where the determinant of U is zero. In this case, one must
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keep everything in terms of the |ki|2, and this situation in two flavours is discussed in [42]. To lighten

the notation, we will also introduce:

Cαγ ≡ Cα
e Cγ∗

e

βαγ ≡ βαβ∗
γ

(87)

We can then rewrite equation (85) as:

PSE = |βe|2P̄⊕
νe→νe

+ |βµ|2P̄⊕
νµ→νe

+ |βτ |2P̄⊕
ντ→νe

+ 2
(

<(βeµ)<(Ceµ) + <(βeτ )<(Ceτ ) + <(βµτ )<(Cµτ )

− =(βeµ)=(Ceµ) −=(βeτ )=(Ceτ ) −=(βµτ )=(Cµτ )
)

(88)

where < (=) stand for the real (imaginary) parts of an expression. We now use the property that,

for two complex numbers, a and b, one has2 :

<(a)<(b) −=(a)=(b) = <(ab) (89)

so that one can rewrite PSE as:

PSE = |βe|2P̄⊕
νe→νe

+ |βµ|2P̄⊕
νµ→νe

+ |βτ |2P̄⊕
ντ→νe

+ 2
(

<(βeµCeµ) + <(βeτCeτ ) + <(βµτCµτ )
)

= |βe|2P̄⊕
νe→νe

+ |βµ|2P̄⊕
νµ→νe

+ |βτ |2P̄⊕
ντ→νe

+ 2<(UαiU
∗
γiC

αγU−1
iλ )|βλ|2

(90)

where it is understood that each combination of flavour indices appears only once (α < γ). It is now

convenient to highlight the separation of earth and solar probabilities by explicitly writing out the

linear combination of solar probabilities (|βλ|2) in the form:

2This relation was (re)discovered by accident and is shown here as it does not appear to be common knowledge!
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<(UαiU
∗
γiC

αγU−1
iλ )|βλ|2 = te|βe|2 + tµ|βµ|2 + tτ |βτ |2 (91)

where the coefficients, tλ are given by

tλ ≡ 2<(CαγUαiU
∗
γiU−1

iλ ) (92)

One can easily check from equation (92) that te + tµ + tτ = 0 from the orthogonality properties of

the mixing matrix U . Thus, there are only two independent coefficients tλ and these only depend on

Earth probabilities, or cross-terms between them. In general, this shows that out of three possible

Earth transmission functions, only two are independent, which is equivalent to the conclusion reached

by [45]. If we now use equations (81) and (83), we can write PSE as:

PSE = |βe|2P̄⊕
νe→νe

+ |βµ|2P̄⊕
νµ→νe

+ (1 − |βe|2 − |βµ|2)(1 − P̄⊕
νe→νe

− P̄⊕
νµ→νe

)

+
(

|βe|2(2te + tµ) + |βµ|2(2tµ + te) − te − tµ

)

(93)

which shows that one can now calculate the result by propagating one neutrino through the Sun

and two through the Earth. Indeed, |βe|2 and |βµ|2 can both be obtained from the same initial

conditions in the Sun (|ν(0) >= |νe >), and we will show how one can calculate te and tµ from two

neutrinos propagated through the Earth instead of three, as suggested by equation (92). We will

first demonstrate the use of this formalism in two flavours, where the algebra is significantly easier.

2.5.3 Interlude: Two-Flavour Case

In order to better understand the derivation and formula for PSE , it is helpful to consider the

two-flavour case. We start by rewriting equation (79) for two flavours of neutrinos:

|βα|2 = |Uαi|2|ki|2

|βe|2 = cos2(θ)|k1|2 + sin2(θ)|k2|2

|βµ|2 = sin2(θ)|k1|2 + cos2(θ)|k2|2

(94)
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One can then easily solve for the matrix U−1:

U−1 =
1

cos(2θ)







cos2(θ) − sin2(θ)

− sin2(θ) cos2(θ)






(95)

and note that this is only allowed when θ 6= π
4 . The expressions for te and tµ, given by equation

(92), are thus:

tλ ≡ 2<(CαγUαiU
∗
γiU−1

iλ )

te =
1

cos(2θ)
2<

(

Ceµ(− cos(θ) sin(θ) cos2(θ) − cos(θ) sin(θ) sin2(θ))
)

tµ =
1

cos(2θ)
2<

(

Ceµ(cos(θ) sin(θ) sin2(θ) + cos(θ) sin(θ) cos2(θ))
)

(96)

and one easily verifies that tµ = −te. We can now rewrite equation (93) in the two flavour case

where we now have |βµ|2 = 1 − |βe|2 and tµ = −te:

P 2f
SE = |βe|2P̄⊕

νe→νe
+ (1 − |βe|2)(1 − P̄⊕

νe→νe
) +

(

|βe|2te + (1 − |βe|2)(−te)
)

= 1 − |βe|2 + P̄⊕
νe→νe

(2|βe|2 − 1) + te(2|βe|2 − 1)

(97)

so that PSE only depends on |βe|2 and te. We now show how one can express te in terms of a

probability through the Earth and define P 2f
E1 as the probability, averaged over the Earth trajectories,

that a neutrino that started in the state with |βe|2 = χe is detected as an electron flavour neutrino

after traversing the Earth:

P 2f
E1 ≡ PSE(|βe|2 = χe, |βµ|2 = χµ = 1 − χe)

= 1 − |χe|2 + P̄⊕
νe→νe

(2|χe|2 − 1) + te(2|χe|2 − 1)

(98)

One can then trivially solve for te:

te =
P 2f

E1 − 1 + χe

2χe − 1
− P̄⊕

νe→νe
(99)
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and finally obtain the two-flavour formula for PSE , where χe is simply a number between zero and

one:

P 2f
SE = 1 − P̄�

νe→νe
+

P 2f
E1 − 1 + χe

2χe − 1
(2P̄�

νe→νe
− 1) (100)

In order to calculate the function P 2f
E1, one needs to know the mass eigenstate content that

corresponds to the desired average flavour content (χe). This is required since we assumed an

average flavour content, χe, in dropping the phases in equation (79). When one wants to calculate

P 2f
E1, one then starts a neutrino in a state:

|ν >= k1|ν1 > +k2e
iφ|ν2 > (101)

and averages the electron flavour content, after the propagation, over the phase, φ as well as all the

possible Earth trajectories. k1 and k2 are real numbers such that:

χe = cos2(θ)|k1|2 + sin2(θ)|k2|2

χµ = sin2(θ)|k1|2 + cos2(θ)|k2|2

(102)

In order to determine k1 and k2, one needs to invert equation (94). Several restrictions then become

apparent; the determinant of the equation must be non-zero and most importantly, the solutions

for k1 and k2 must be physical. This is not guaranteed since information was lost when the phases

between mass eigenstates were dropped. For example, since all the terms in equation (102) must be

positive, there is no way that one can solve for k1 and k2 if one of the χ is zero. One does however

note that the sum of the |ki|2 is still guaranteed to be equal to one. Inverting equation (102) gives:

|k1|2 =
1

cos(2θ)

(

cos2(θ)χe − sin2(θ)χµ

)

|k2|2 =
1

cos(2θ)

(

− sin2(θ)χe + cos2(θ)χµ

)

(103)

Then, if we assume that θ < π
4 (thus restricting cos(2θ) to be positive), and then require that

0 ≤ |ki|2, we obtain the following inequalities on the χ:

sin2(θ) ≤ χe ≤ cos2(θ)
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sin2(θ) ≤ χµ ≤ cos2(θ)

(104)

which are reversed if θ > π
4 . One notes that in the case where θ = π

4 , equation (103) breaks down,

and one cannot use this derivation for PSE in this case, which is discussed in [42]. This corresponds

to the general case where the determinant of U is zero.

The two-flavour formula for PSE is well know in the literature, it was first discovered by Baltz and

Weneser ([43], [44]) who present a version that used two Earth transmission functions, and Mikheyev

and Smirnov [46] first presented the formula that is presented here, although our formalism is more

general. Mikheyev and Smirnov’s formula corresponds to the choice where χe = sin2(θ), where P 2f
E1

is then the probability of detecting an electron flavour neutrino for a neutrino that entered the Earth

in a pure |ν2 > eigenstate. This particular choice is advantageous due to the fact that one need

not average over the phase in equation (101) to calculate P 2f
E1 and is further motivated by the fact

that neutrinos from the Sun were noted to emerge predominantly in the |ν2 > eigenstate. With this

particular choice of χe, PSE takes the simple form:

PSE =
P̄�

νe→νe
− sin2(θ) − P⊕

ν2→νe
(2P̄�

νe→νe
− 1)

cos(2θ)
(105)

which is the version that appears most often in the literature and where we have relabeled P 2f
E1 as

P⊕
ν2→νe

, since it now represents the probability of detecting an electron neutrino from a neutrino

that started in the |ν2 > mass eigenstate.

2.5.4 Back to Three Flavours

We now show how to re-express the tλ in terms of simple probabilities in three flavours. We thus

introduce two, new, functions, PE1 and PE2. We will define PE1 as the probability averaged over

the Earth of detecting an electron neutrino from a neutrino that started in a state with |βe|2 = χ1e

and |βµ|2 = χ1µ. Similarly, PE2 will correspond to the case of a neutrino entering the Earth in the

state with |βe|2 = χ2e and |βµ|2 = χ2µ. We thus define:

PE1 ≡ PSE(|βe|2 = χ1e, |βµ|2 = χ1µ)

= χ1eP̄
⊕
νe→νe

+ χ1µP̄⊕
νµ→νe

+ (1 − χ1e − χ1µ)(1 − P̄⊕
νe→νe

− P̄⊕
νµ→νe

)

+ te(2χ1e + χ1µ − 1) + tµ(2χ1µ + χ1e − 1)

(106)
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and

PE2 ≡ PSE(|βe|2 = χ2e, |βµ|2 = χ2µ)

= χ2eP̄
⊕
νe→νe

+ χ2µP̄⊕
νµ→νe

+ (1 − χ2e − χ2µ)(1 − P̄⊕
νe→νe

− P̄⊕
νµ→νe

)

+ te(2χ2e + χ2µ − 1) + tµ(2χ2µ + χ2e − 1)

(107)

One can then easily solve equations (106) and (107) to express te and tµ in terms of PE1 and

PE2. After some simple rearrangements, one finds that the dependence on P̄⊕
νe→νe

and P̄⊕
νµ→νe

has

vanished and that PSE can be written as:

PSE =
1

W
P̄�

νe→νe
(PE2(1 − 3χ1µ) − PE1(1 − 3χ2µ) + χ1µ − χ2µ)

+
1

W
P̄�

νe→νµ
(PE1(1 − 3χ2e) − PE2(1 − 3χ1e) + χ2e − χ1e)

+
1

W
PE1(χ2e − χ2µ) + PE2(χ1µ − χ1e) + χ1eχ2µ − χ1µχ2e

(108)

where we have defined:

W ≡ 3(χ1eχ2µ − χ1µχ2e) + χ1µ + χ2e − χ1e − χ2µ (109)

As in the two flavour case, one should note that not all choices of χ are permitted, since these

must be consistent with equation (86). For example, none of them can be equal to zero or one, as

there is no vacuum mass eigenstate content that, when averaged over the phases, will give a neutrino

in a pure flavour eigenstate3. Again, one can write a set of inequalities that must be satisfied by

the χ, simply by requiring that the mass eigenstate contents, as given by equation (86), be positive

(the unitarity of U already guarantees that they will sum to one):

0 ≤ U−1
1e χe + U−1

1µ χµ + (1 − U−1
1e − U−1

1µ )(1 − χe − χµ)

0 ≤ U−1
2e χe + U−1

2µ χµ + (1 − U−1
2e − U−1

2µ )(1 − χe − χµ)

0 ≤ U−1
3e χe + U−1

3µ χµ + (1 − U−1
3e − U−1

3µ )(1 − χe − χµ) (110)

3This can only happen if the mixing matrix is the identity matrix, in which case the mass eigenstates are in fact
the same as the flavour eigenstates
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It is not helpful to solve these inequalities in the general case, since one does not know, a priori, the

sign of the denominator of U . One should however keep in mind when calculating PE1 and PE2 that

not all choices are possible for the initial flavour contents.

2.5.5 Calculating and Choosing PE1 and PE2

We now discuss PE1 and PE2 and how they are to be calculated. These functions were chosen to

represent the probability of detecting an electron neutrino that entered the Earth in a given average

flavour content, χe and χµ. In other words, we require that a neutrino starting in the state:

|ν >= k1|ν1 > +k2e
iφ2 |ν2 > +k3e

iφ3 |ν3 > (111)

have the required average flavour content if one calculates the flavour content and then averages

over the phases of the vacuum states. This is the requirement that we imposed in equation (79) so

that we could express βαβ∗
γ in terms of |βα|2 by relating both of these quantities to the |ki|2. The

formula we derived for PSE is thus only valid in this case, and represents the probability of detecting

an electron neutrino from an incoherent beam of neutrinos emerging from the Sun.

PE1 and PE2 can then be calculated by starting a neutrino in the state given by equation (111),

propagating it through the Earth, and averaging the resulting electron flavour content over all

possible values of the phases, φ2 and φ3. Once this average over the phases is obtained, one then

averages this result over all the possible Earth trajectories, which are determined by the zenith angle

exposure function, to finally obtain PE1 and PE2.

In order to calculate these probabilities quickly, it can be seen that choosing the initial content

to be in a pure mass eigenstate eliminates the need to average over the phases. A particularly good

choice is to calculate PE1 for a neutrino that starts in the |ν1 > eigenstate and PE2 for a neutrino

that starts in the |ν3 > eigenstate, as this eliminates the need to calculate the phase average. This

then corresponds to:

χ1e = |Ue1|2 = c2
12c

2
13

χ1µ = |Uµ1|2 = | − s12c23 − c12s23s13e
iδ |2 = s2

12c
2
23 + c2

12s
2
23s

2
13 + ξ

χ2e = |Ue3|2 = s2
13

χ2µ = |Uµ3|2 = s2
23c

2
13

(112)
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so that the final three-flavour formula for PSE takes the form:

PSE =
1

W
P̄�

νe→νe

[

P⊕
ν3→νe

(1 − 3s2
12c

2
23 − 3c2

12s
2
23s

2
13 − 3ξ) − P⊕

ν1→νe
(1 − 3s2

23c
2
13)

]

+
1

W
P̄�

νe→νe

[

s2
12c

2
23 + c2

12s
2
23s

2
13 + ξ − s2

23c
2
13

]

+
1

W
P̄�

νe→νµ

[

P⊕
ν1→νe

(1 − 3s2
13) − P⊕

ν3→νe
(1 − 3c2

12c
2
13) + s2

13 − c2
12c

2
13

]

+
1

W

[

P⊕
ν1→νe

(s2
13 − s2

23c
2
13) + P⊕

ν3→νe
(s2

12c
2
23 + c2

12s
2
23s

2
13 + ξ − c2

12c
2
13)

]

+
1

W

[

(c2
13 − s2

13)c
2
12s

2
23 − s2

13(s
2
12c

2
23 + ξ)

]

W = s2
13 + (1 − 3s2

13)(s
2
12c

2
23 + c2

12s
2
23 + ξ) + c2

13(3c2
12s

2
23 − c2

12 − s2
23)

(113)

where we have defined ξ as the term that depends on the CP violating phase:

ξ =
1

2
sin(2θ12) sin(2θ23) sin(θ13) cos(δ) (114)

and renamed PE1 and PE2 with P⊕
ν1→νe

and P⊕
ν3→νe

, respectively, since we have restricted them

to correspond to probabilities for neutrinos that started in the first and third mass eigenstates.

Equation (113) is the main theoretical result of this section.

2.5.6 Dependence of PSE on the Mixing Parameters (Two Flavours)

In this section, we briefly examine how the formula for PSE depends on the two-flavour mixing

parameters, in analogy to section (2.3) where the dependence of the solar survival probability was

examined. We will also introduce the day-night asymmetry, AN−D:

AN−D ≡ 2
PN − PD

PN + PD

(115)

which is a measure of the relative difference between the solar neutrino flux at night-time (PN ) and

in the day-time (PD), when the neutrinos do not traverse the Earth. The day-night asymmetry is

thus a measurable quantity that is proportional to PSE − P̄�
νe→νe

. Solar neutrino experiments such

as SNO can then make two independent measurements to constrain both the mixing angle and mass

squared difference by measuring the daytime flux as well as the day-night asymmetry.

The easiest way to illustrate the effect of the Earth on solar neutrinos is to examine the spectrum
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of the survival probability. This is shown in Figure (54a) where the probability of detecting an

electron neutrino from a solar neutrino is plotted as a function of energy with ∆m21 = 4× 10−5eV 2

and tan2(θ) = 0.42. The survival probability from the Sun is calculated using the two-flavour jump

probability along with the adiabatic approximation. The three curves show the survival probability

in the day (no Earth), at night and averaged over a year using the zenith angle exposure function

(Figure (55)) for SNO. The night curve is also weighed by the zenith angle exposure function for

nadir angles between 0 and π. The Earth is noted to have the largest effect at higher energies.

Figure (54b) shows the corresponding day-night asymmetry as a function of energy.
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(b) Day-Night Asymmetry

Figure 54: Survival probability of electron solar neutrinos as a function of energy at SNO with
∆m21 = 4 × 10−5eV 2 and tan2(θ) = 0.42 during the day, night and averaged over a year (left) and
corresponding value of the day-night asymmetry (right) in percent. As expected, the yearly average
curve lies between the day and night curves. The Earth is seen to have the largest effect at higher
energies and regenerates the electron neutrino component of the beam. When integrated over the
8B flux between 5MeV and 15MeV , the total day-night asymmetry in this case is found to be 6.0%

Figure (56a) shows the day, night and yearly survival probabilities calculated using the best fit

values of the two flavour mixing parameters. As one clearly notes, the day-night asymmetry is quite

small (Figure (56b)), and SNO indeed measures a value that is consistent with zero [8].

Figure (57) shows how the day and night survival probabilities vary for different values of the

mixing angle with ∆m21 = 7 × 10−5eV 2 and Figure (58) shows the corresponding day-night asym-

metry. One notes that the mixing angle has a rather small effect on the day-night asymmetry around

the best fit value, so that a measurement of AN−D does not constrain the mixing angle very much.

Figure (59) shows how the day and night time fluxes depend on the mass-squared difference and

Figure (60) shows the corresponding day-night asymmetry. We note that in this case, the effect of the

mass squared difference is large and conclude that measuring the day-night asymmetry constrains

the mass-squared difference much better than the mixing angle.
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Figure 55: Zenith angle exposure function for SNO as a function of Nadir angle (in radians), taken
from [1].
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(b) Day-Night Asymmetry

Figure 56: Survival probability of electron solar neutrinos as a function of energy at SNO with
∆m21 = 7 × 10−5eV 2 and tan2(θ) = 0.42 during the day, night and averaged over a year (left) and
corresponding value of the day-night asymmetry (right) in percent. With the best fit values of the
mixing parameters, there is almost no day-night asymmetry, as measured by SNO. When integrated
over the 8B flux between 5MeV and 15MeV , the total day-night asymmetry in this case is found
to be 2.3%
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Figure 57: Day and night time survival probabilities as a function of energy for different values of
the mixing angle with ∆m21 = 7×10−5eV 2. The mixing angle is observed to have a small influence.
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Figure 58: Day-night asymmetry as a function of energy for different values of the mixing angle with
∆m21 = 7 × 10−5eV 2, corresponding to Figure (57). The mixing angle is observed to have a small
influence when it is smaller than π

4 .

87



2.5 Solar Neutrinos Propagating Through the Earth 2 THEORY

Energy [eV]
0 2 4 6 8 10 12 14

610×

 
eeP

0.3

0.35

0.4

0.45

0.5

0.55

0.6  (day)2eV-5 10×=1 21 m∆
 (night) 2eV-5 10×=1 21 m∆
 (day)2eV-5 10×=4 21 m∆
 (night) 2eV-5 10×=4 21 m∆
 (day)2eV-5 10×=7 21 m∆
 (night) 2eV-5 10×=7 21 m∆
 (day)2eV-4 10×=1 21 m∆
 (night) 2eV-4 10×=1 21 m∆

Figure 59: Day and night time survival probabilities as a function of energy for different values of
the mass squared difference for tan2(θ) = 0.42. The mass squared difference is seen to have a large
effect.
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Figure 60: Day-night asymmetry as a function of energy for different values of the mass squared
difference for tan2(θ) = 0.42, corresponding to Figure (59). The mass squared difference is seen to
have a large effect.
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2.5.7 Dependence of PSE on θ13

In this section, we consider how the day-night asymmetry varies with θ13. We will assume that

∆m31 is fixed to 1×10−3eV 2 by atmospheric neutrino experiments and have verified that, although

the complex phase appears in the formula for PSE , the day-night asymmetry does not vary as a

function of δ. Furthermore, the mixing angle θ23 also has no influence on PSE , even though it

appears explicitly. The main goal is to consider whether solar neutrino experiments are sensitive (in

principle) to θ13 when a measurement of the day-night asymmetry is made. Section (3.1) will focus

more carefully on the measurement of θ13, and we only intend a proof of principle in this section.

In general, it is difficult to factor out the θ13 dependence from our formula for PSE . A qualitative

idea on the dependence on θ13 can be obtained if one neglects the term ξ. It is then easy to show

that PSE can be parametrized in the form:

PSE =
c2
13(A1P

⊕
ν1→νe

+ A2P
⊕
ν3→νe

+ A3) + (B1P
⊕
ν1→νe

+ B2P
⊕
ν3→νe

+ B3)

D1c2
13 + D2

(116)

where the A and B contain solar probabilities, mixing angles and Earth probabilities and the D

contain only mixing angles. The authors in [47] have obtained approximations for the functions

P⊕
ν1→νe

and P⊕
ν1→νe

that appear in the A and B by deriving series expansions in the matter potential

term. We will not go into the details of their derivation, but simply quote their results:

P⊕
ν1→νe

= c2
13(a1c

2
13 + a2)

P⊕
ν3→νe

= 1 − c2
13

(117)

where a1 and a2 depend on integrals of the matter potential through the Earth. We can then

re-parametrize PSE as:

PSE =
A1c

6
13 + A2c

4
13 + A3c

2
13 + B

D1c2
13 + D2

(118)

where A and B now depend only on solar survival probabilities and mixing angles. This is to be

compared with the result in [15] where it is claimed that the day-night asymmetry is proportional

to c6
13. The authors in [15] make several approximations, in particular that the Earth has a constant

density. Furthermore, they make the approximation that the third neutrino is decoupled (hence using

the first-order formula that we presented in section (2.2)) and that the solar survival probability is

then proportional to c4
13. In our case, if we also assume that the solar survival probability goes as
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c4
13 we can express PSE as an eighth order (even) polynomial in c13:

PSE = A1c
8
13 + A2c

6
13 + A3c

4
13 + A4c

2
13 + B1 +

B2

c13
(119)

This formula should give a qualitative idea on the dependence of the day-night asymmetry on θ13,

and it is not very enlightening to show the actual content of the coefficients A and D. In particular,

we note that one expects a smaller asymmetry for large value of θ13.

Figure (61) shows how the day and night time survival probabilities behave as a function of energy

for different values of θ13. The two-flavour mixing parameters were chosen as ∆m21 = 4× 10−5eV 2

and tan2(θ12) = 0.42, in order to amplify the day-night asymmetry. We note that the difference

between the day and night flux is bigger for smaller θ13, which is shown more clearly in Figure (62)

where the corresponding day-night asymmetry is shown.
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Figure 61: Day and night time survival probabilities as a function of energy for different values of
θ13 with tan2(θ12) = 0.42 and ∆m21 = 4 × 10−5eV 2. A larger θ13 is seen to decrease the effect of
the Earth.

Figure (63) shows the day-night asymmetry as a function of θ13 divided by the corresponding

day-night asymmetry with θ13 = 0 for a neutrino energy of 10MeV with ∆m21 = 7 × 10−5eV 2 and

two different values of θ12 (30 and 40 degrees). This is to be compared with Figure (4) from [15] and

we note that our agreement with their results is excellent. The small difference between our plot

and theirs come from the fact that we have used a fully numerical calculation through the Earth
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Figure 62: Day-night asymmetry as a function of energy for different values of θ13 with tan2(θ12) =
0.42 and ∆m21 = 4 × 10−5eV 2, corresponding to Figure (61). A larger θ13 is seen to decrease the
day-night asymmetry.

compared to their approximation of a constant density and furthermore, from the fact that we set

the neutrino energy, whereas they set the neutrino energy based on an electron detected in a CC

reaction.

In Figure (64), we have plotted PSE minus the daytime survival probability as a function of

cos(θ13) to better illustrate the effect of θ13, and verify the qualitative behavior of PSE as a function

of θ13. We have thus also shown two fitted curves, one corresponding to the eighth order polynomial

in equation (119) and the other to a simple term in c6
13, as suggested by [15]. Table (1) shows the

relative size of the coefficients for the fit to equation (119) to give an idea of their importance. It is

clear that both expressions fit very well in general, and that equation (119) agrees extremely well.

We note from Table (1) that the term in c8
13 is not negligible compared to the term in c6

13. The

excellent agreement suggests that the first-order decoupling formula for solar neutrinos is very good

(as was already shown in section (2.3)) and that the expansions suggested by [47] are also a very

good approximation to P⊕
ν1→νe

and P⊕
ν3→νe

.

The main conclusions from this section are then that a measurement of the day-night asymmetry

is primarily sensitive to ∆m21 and we have shown that, in principle, it is also sensitive to θ13.

Unfortunately, solar neutrino experiments are not likely to be able to claim a non-zero measurement

of θ13 as the effect is small, due to the particular value of ∆m21, and would thus require an extremely

91



2.5 Solar Neutrinos Propagating Through the Earth 2 THEORY

 [deg]13θ
0 2 4 6 8 10

=0
)

13θ
A/

A(

0.94

0.95

0.96

0.97

0.98

0.99

1

=30 deg.12θ

=45 deg 12θ

Figure 63: Day-night asymmetry as a function of θ13 divided by the asymmetry when θ13 = 0 for a
neutrino energy of 10MeV with ∆m21 = 7 × 10−5eV 2 and two different values of θ12. This figure
is to be compared with Figure 4 of [15] and confirms our work as well as their approximation of the
Earth as having a constant density.
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Figure 64: PSE minus daytime survival probability (i.e. PSE − P̄�
νe→νe

) as a function of cos(θ13)
for a 10MeV neutrino with ∆m21 = 4× 10−5eV 2 and tan2(θ12) = 0.42. We also show the fit to the
eighth order polynomial in equation (119) (see Table (1)) as well as a fit to a term in c6

13. Both fits
are very good, and the eighth order polynomial is overall a more accurate description.
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A1 0.0207
A2 -0.0145
A3 0.0035
A4 0.0035
B1 2.05 ×10−5

B2 -4.25 ×10−8

Table 1: Fit parameters for the eigth order polynomial in equation (119) for the curve in Figure (64)

accurate measurement.
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3 Applications

In the following sections, we examine numerical results obtained using the approximations presented

in the Theory section. The calculations were all done using a C++ library written to take advantage

of the various approximations and calculate solar neutrino fluxes in the day and at night using the

formula for PSE .

3.1 Measuring θ13 with Solar Neutrinos

The original motivation of our work was to look at the possibilities of measuring θ13, in particular

using the day-night asymmetry, with SNO and solar neutrinos, which we consider in this section.

The main difficulty in doing this is that if one wants to measure θ13, then the solar flux will have to

be fitted to four parameters: ∆m21, θ12, ∆m31 and θ13. In practice this means that four independent

measurements need to be made. We thus make the assumption, in this section, that ∆m31 can be

obtained from atmospheric neutrino measurements and that ∆m21 can be obtained from reactor

neutrino experiments, in particular the KAMLAND collaboration. Their experiment is sensitive to

both of the two-flavour mixing parameters, however, they have shown to be more sensitive to ∆m21

than θ12 [9]. We hence assume that the mass-squared differences are fixed from other experiments

and that SNO then only needs to make two independent measurements to constrain the two mixing

angles that are involved in the electron flavour survival probability. Throughout this section we will

use ∆m21 = 7 × 10−5eV 2 (which is slightly below the latest ’solar+KAMLAND’ fits ([8], [9])) and

∆m31 = 1× 10−3eV 2, which is also slightly below the best fit value from [11], although compatible,

and as we have seen earlier, has very little impact on solar neutrinos.

SNO obviously has the ability to make more than two different measurements, so we must seek

which ones give the best constraints on θ13. The first possibility is to make two measurements of the

flux at different energies, to see how the two depend on θ13, and the second possibility is to look at

day and night time measurements, since the day-night asymmetry was shown in section (2.5) to also

depend on θ13. One can then imagine combining these different sets of measurements. The aim of

this section is to show this theoretical dependence without actually fitting the data for the angles,

which is beyond the scope of this thesis.

3.1.1 With the Day-Night Asymmetry

We will first consider the possibility of constraining θ13 with measurements of the day-night asym-

metry. When we started this work, this was a novel idea; however, other authors, in particular
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[15], have looked into the same idea and published results while we were still doing research. Our

approach is however quite different, although we draw similar conclusions.

We have already seen in section (2.5) that there is not a very large day-night asymmetry with

the current experimental values of the mixing parameters. We hence already know that such mea-

surements will have to be made with a high degree of accuracy, and in fact this will necessarily

be beyond the capabilities of SNO, which currently measures an asymmetry consistent with zero.

Nonetheless, it is still of theoretical interest to consider the possibility that might be of use for the

next generation of experiments.

This section will only focus on the day-night asymmetry integrated over the 8B spectrum. The

next section will consider the energy dependence. In order to measure the two mixing angles, we

find it convenient to plot the survival probability as a function of these two angles, in order to look

at the correlation between the two. We will also focus on a region of parameter space around the

experimental values of the mixing angles. We will examine the dependence for 0.3 < tan2(θ12) < 0.7,

which is roughly a 2σ bound from [8], and we will impose 0 < sin2 θ13 < 0.3 (see [11]).

Figure (65) shows the survival probability in the day, that is, averaged over the Sun and Sun-

Earth distance, but with no matter effect from the Earth, as a function of θ12 and θ13 integrated

over the 8B spectrum between 3MeV and 15MeV . The calculation was done using the three-

flavour adiabatic approximation with the two flavour jump probability and the formula for PSE that

was derived in section (2.5). In an experimental situation, one would then measure the survival

probability (in SNO, this is related to the CC/NC ratio), and hence the corresponding contour in

Figure (65). A very qualitative estimate would then require a measurement of the solar survival

probability to within ∼ 3% to pick out a contour.

The second measurement can be done by considering the day-night asymmetry, AN−D. Figure

(66) shows the average night time survival probability and Figure (67) shows the corresponding

day-night asymmetry in the θ12-θ13 plane. Again, if one were to use a measurement of the day-

night asymmetry to deduce the corresponding contour, this should be done with a precision around

∼ 3%. For comparison, the last SNO measurement of the day-night asymmetry [8] is of the order

of 100% (consistent with no asymmetry) and there is thus not much hope in using this type of

measurement to fit for θ13 with current experiments. It is however interesting to note that an

accurate measurement of a small day-night asymmetry would be sufficient to claim a non-zero value

for θ13, as the correlation with θ12 appears to be small.
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Figure 65: Daytime flux integrated from 3MeV to 15MeV as a function of tan2(θ12) and sin2(θ13)

Figure 66: Night time flux integrated from 3MeV to 15MeV as a function of tan2(θ12) and sin2(θ13)
averaged over the zenith angle exposure function of SNO for Nadir angles between π

2 and π.
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Figure 67: Day-Night asymmetry (in percent) integrated from 3MeV to 15MeV as a function of
tan2(θ12) and sin2(θ13). The values are calculated using Figures (65) and (66)

3.1.2 With Fluxes at Different Energies

The idea of using the fluxes at different energies appears to have been first proposed by [48] who used

the concept to fit and obtain a non-zero value for θ13 with results from solar neutrinos, although

the measurement is not statistically significant. For completeness, we use our own computer code

to illustrate the effect and discuss how it might be used to measure θ13.

In our version of the analysis, we plot the survival probability as a function of θ12 and θ13

integrated over different ranges of energies. Figure (68) shows the day-time survival probability over

two different ranges in energies (1 to 6MeV (left), and 6 to 15MeV (right)). The corresponding

day-night asymmetry is not useful in a measurement at different energies as we have shown in section

(2.5) that there is virtually no day-night asymmetry at low energies.

One notes that there is a qualitatively different behaviour at different energies. Future experi-

ments sensitive to low-energy solar neutrinos should be able to make these measurements and help

to constrain θ13. In particular, the lower energy range appears to be the best for constraining θ13, as

the contours are almost horizontal. It appears that one 5% measurement alone, in this energy range,

could be sufficient to claim a non-zero value for θ13. This appears to be a very exciting conclusion

as several proposals for low energy solar neutrino experiments are now being seriously considered.

The main conclusions of this section are that, in principle, solar neutrinos can be used to measure
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(a) Day time survival probability inte-
grated between 1 and 6MeV

(b) Day time survival probability inte-
grated between 6 and 15MeV

Figure 68: Day time flux integrated from 1MeV to 6MeV (left) and from 6MeV to 15MeV (right)
as a function of θ12 and θ13.

θ13. Although we have seen that the day-night asymmetry is much more dependent on θ13 than θ12,

we have shown that one would require an extremely accurate measurement to determine a non-zero

value for θ13. The best hope for measuring θ13 with solar neutrinos is then to measure accurately

the (day-time) survival probability at lower energies.
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3.2 Defining the Night Bin for Underground Detectors

In this section, we examine how the matter above an underground detector affects the flux of

neutrinos. We will see that the night bin should be defined for Nadir angles between 0 and π
2 + ε,

where ε is a small angle making the night bin longer. The difference comes from the detector being

underground and thus leaving a non-negligible path through the Earth when the Nadir angle is equal

to π
2 (see Figure (14)).

To illustrate this effect, we consider a detector 2km underground, consistent with the SNO

location. We use a model that involves propagating neutrinos through the Earth by starting them

in a given mass eigenstate mixture which is essentially the same method as presented in section

(2.4). Consider neutrinos in the state:

|ν >= k1|ν1 > +k2|ν2 > e−iφ (120)

In Figure (69), we show the survival probability as a function of energy and Nadir angle for

neutrinos that started in the state defined by equation (120) and averaged over the phase φ. The

mixing parameters were chosen as tan2(θ12) = 0.42 and ∆m21 = 7× 10−5eV 2 corresponding to the

best-fit two-flavour case. Several features are visible on this plot, the most striking being the vertical

line corresponding to the mantle-core interface. One also notes the vacuum oscillations in distance

(proportional to cos(η)) that are approached when η = π
2 as well as the fact that the Earth has a

larger effect at higher energies. One can also see the effect of the LMA spectrum, giving a higher

survival probability at lower energies and washing out the effect of the Earth at those energies. The

mass eigenstate contents in equation (120) were calculated as a function of energy from the Sun. We

have tested this model with the mass eigenstates being constant as a function of Energy and came

to the same conclusions.

When this plot was first made, it seemed that the various features were quite large and might

be observable with the SNO detector. Since SNO does not have the resolution to distinguish the

features that are energy dependent 4, one can integrate Figure (69) over the 8B spectrum to obtain

the dependence on the Nadir angle. Obviously, the detector’s resolution of the Nadir angle is

excellent, since all neutrino events are tagged in time. Figure (70), shows this energy integrated

survival probability as a function of Nadir angle. We note the survival probability having two

different average values, corresponding to the night flux (when η < π
2 ) and day flux (when η > π

2 ).

The difference between these two is then the day-night asymmetry.

4SNO has a resolution of about 1MeV on electron energy
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Figure 69: Survival probability through the Earth as a function of Nadir angle (in radians) and
energy (in eV ) for a detector 2km underground and neutrinos that started in the state defined by
equation (120) and averaged over the phase. The mixing parameters are set to tan2(θ12) = 0.42 and
∆m21 = 7 × 10−5eV 2.

One notes that the average between the day and night fluxes actually changes slightly above

η = π
2 . This comes from the fact that at η = π

2 , the path length through the Earth is still about

160km and there is still a chance for the coherence acquired at the boundary with the Earth to

have a (small) effect since the vacuum oscillation length for 10 MeV neutrinos is about 350km when

∆m21 = 7× 10−5eV 2. However, it is noted that with the current experimental values of the mixing

parameters, the effect of the Earth is quite small, as seen in previous sections.

Finally, we can use Figure (70) to extract values for the day-night asymmetry, depending on the

size of the night bin. The values for the day (D) and night (N) time fluxes, as well as the day-night

asymmetry, AN−D, are shown in table (2), for the usual bin size and when one uses a non-zero value

for epsilon (given in degrees):

ε AN−D (%)
0 2.29
13 1.99

Table 2: Day-night asymmetry for two different sizes of the night bin (ε given in degrees). Results
were obtained by integrating Figure (69) with the zenith angle exposure function for SNO, and the
8B spectrum between 5MeV and 15MeV .

First, we note that in either case, the asymmetry is very small and would require a measurment
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Figure 70: Same as Figure (69) but integrated over the 8B spectrum between 3 and 15 MeV, as
a function of Nadir angle (in radians). The dotted line corresponds to η = π

2 , and ε is the extra
amount the night bin should be extended. In this plot, ε is approximately 13 degrees.

with the corresponding accuracy. Second, there is a difference between the two values, with a relative

difference of about 13% of the value when the night bin extends to η = π
2 + ε. The surprising

conclusion is that the asymmetry is actually smaller for the case with ε not equal to zero, since this

case ’weighs in’ values of the survival probability that are lower than the average night value.

The conclusion of this section is that, in order to be rigorous, one should extend the length of

the night bin, if one wants the day-night asymmetry to be a measurement of the effect of the Earth

on solar neutrinos. Regrettably, this makes the day-night asymmetry even smaller and harder to

measure conclusively.
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4 Summary and Conclusions

In this thesis, we have provided an extensive overview of the oscillation calculations for solar neutri-

nos. We started by introducing the theoretical framework for neutrino calculations in section (2.1)

and then applied them to the propagation of neutrinos through arbitrary media in section (2.2).

We showed that the numerical propagation of neutrinos is not affected by discontinuous density

boundaries as long as one imposes the condition that the flavour content be continuous through the

interface. Various approximations were also introduced in section (2.2) and in particular, it was

shown that the adiabatic approximation is very accurate for media with smoothly varying density

profiles.

In section (2.3), we examined the propagation of neutrinos in the Sun, in light of the approxima-

tions that were introduced in section (2.2). We also presented our own numerical algorithms for the

propagation of solar neutrinos and showed that the step size is best chosen by an algorithm that uses

the wavelength in matter before the MSW resonance and then switches to exponentially increasing

steps in the parts of the Sun where the oscillations are close to the vacuum regime. We concluded

this section by recommending that the fastest and most accurate method of propagating solar neu-

trinos is a combination of the three-flavour adiabatic approximation used with a two-flavour jump

probability. This is consistent with the idea that the third mass eigenstate is effectively decoupled

from the first two.

Section (2.4) examined the propagation of neutrinos in the Earth. The case of an incoherent

beam arriving at the Earth from vacuum was considered and it was shown that the interface with

the Earth reintroduces coherence in the beam. It was seen that this was the result of one of the

mass eigenstates being regenerated at a particular point in space. We also examined the influence

of the Earth on the survival probabilities as a function of the mixing parameters and showed that

the Earth has a small effect with the current best-fit values of the mixing parameters.

In section (2.5), we presented our most significant contribution, when we examined the survival

probability for solar neutrinos when they traverse the Earth. We introduced a three-flavour formula

that allows one to calculate the survival probability separately in the Sun and in the Earth and

then combine these to obtain the final result. In addition to providing a computationally efficient

formalism, we also showed how the day-night asymmetry behaves as a function of θ13, in a manner

consistent with the results found by others in the literature. We concluded by showing that the

day-night asymmetry is most sensitive to ∆m21. We also showed that the asymmetry depended on

θ13 more than on θ12.
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We presented two examples of applications of our theoretical findings. We first examined how

a solar neutrino experiment could measure θ13 in section (3.1). It was shown that the day-night

asymmetry provided a useful tool for constraining θ13 in theory, but that the required precision

was unrealistic for current experiments. We concluded section (3.1) by showing that a low-energy

measurement of the day solar survival probability would provide the best constraint for θ13. Finally,

in section (3.2) we considered the effect of modeling a solar neutrino detector underground, as is the

case for the Sudbury Neutrino Observatory. We showed that a rigorous definition of the day-night

asymmetry required extending the night bin to account for the matter effect on Earth-skimming

neutrinos, as the path length through the Earth is comparable to the oscillation length in that case.
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